ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-Town Meeting on Spin Physics at an Electron-Ion Collider

123   0   0.0 ( 0 )
 نشر من قبل Leonard Gamberg
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A polarized $ep/eA$ collider (Electron--Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center--of--mass energy $sqrt{s} sim 20$ to $sim100$~GeV (upgradable to $sim 150$ GeV) and a luminosity up to $sim 10^{34} , textrm{cm}^{-2} textrm{s}^{-1}$, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three--dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini--review contains a short update on progress in these areas since the EIC White paper~cite{Accardi:2012qut}.



قيم البحث

اقرأ أيضاً

We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.
We discuss two collider processes which combine a diffractively produced $rho$ meson separated by a large rapidity gap from a hard exclusive scattering of a Pomeron on a nucleon, giving rise to a lepton pair or to a second meson. These two processes probe the nucleon quark content described by generalized parton distributions in a very specific way.
An electron-muon collider with an asymmetric collision profile targeting multi-ab$^{-1}$ integrated luminosity is proposed. This novel collider, operating at collisions energies of e.g. 20-200 GeV, 50-1000 GeV and 100-3000 GeV, would be able to probe charged lepton flavor violation and measure Higgs boson properties precisely. The collision of an electron and muon beam leads to less physics background compared with either an electron-electron or a muon-muon collider, since electron-muon interactions proceed mostly through higher order vector boson fusion and vector boson scattering processes. The asymmetric collision profile results in collision products that are boosted towards the electron beam side, which can be exploited to reduce beam-induced background from the muon beam to a large extent. With this in mind, one can imagine a lepton collider complex, starting from colliding order 10 GeV electron and muon beams for the first time in history and to probe charged lepton flavor violation, then to be upgraded to a collider with 50-100 GeV electron and 1-3 TeV muon beams to measure Higgs properties and search for new physics, and finally to be transformed to a TeV scale muon muon collider. The cost should vary from order 100 millions to a few billion dollars, corresponding to different stages, which make the funding situation more practical.
77 - W. Cosyn , B. Pire 2021
In high energy electron-ion colliders, a new way to probe nucleon structure becomes available through diffractive reactions, where the incident particle produces a very energetic almost forward particle. QCD describes these reactions as due to the ex change of a Pomeron which may be perturbatively described as a dressed two-gluon state, provided a hard scale allows the factorization of the amplitude in terms of two impact factors convoluted with a Pomeron propagator. We consider here a process where such a description allows to access hadronic structure in terms of the generalized parton distributions, namely the electroproduction of a forward $rho$ meson and a timelike deeply virtual photon, separated by a large rapidity gap. We explore the dependence of the cross section on the kinematic variables and study the dependence on the non-perturbative inputs (generalized parton distributions, distribution amplitude). Our leading order studies show the cross section is mainly sensitive to the GPD model input, but the small size of the cross sections could prohibit straightforward analysis of this process at planned facilities.
We consider the one-parameter family of jet substructure observables known as angularities using the specific case of inclusive jets arising from photoproduction events at an Electron-Ion Collider (EIC). We perform numerical calculations at next-to-l eading logarithmic accuracy within perturbative QCD and compare our results to PYTHIA 6 predictions. Overall, we find good agreement and conclude that jet substructure observables are feasible at the EIC despite the relatively low jet transverse momentum and particle multiplicities. We investigate the size of subleading power corrections relevant at low energies within the Monte Carlo setup. In order to establish the validity of the Monte Carlo tune, we also perform comparisons to jet shape data at HERA. We further discuss detector requirements necessary for angularity measurements at an EIC, focusing on hadron calorimeter energy and spatial resolutions. Possible applications of precision jet substructure measurements at the EIC include the tuning of Monte Carlo event generators, the extraction of nonperturbative parameters and studies of cold nuclear matter effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا