ترغب بنشر مسار تعليمي؟ اضغط هنا

Creating deterministic collisions between two orbiting bodies

63   0   0.0 ( 0 )
 نشر من قبل Akhtar Munir Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to create deterministic collisions between orbiting bodies by applying a time-dependent external force to one or both bodies, whether the bodies are mutually repulsive, as in the two- or multi-electron atomic case or mutually attractive, as in the planetary-orbit case. Specifically, we have devised a mathematical framework for causing deterministic collisions by launching an inner orbiting body to a higher energy such that this inner body is guaranteed to collide with the outer body. Our method first expresses the problem mathematically as coupled nonlinear differential equations with a time-dependent driving force and solves to find a feasible solution for the force function. Although our calculation is based strictly on classical physics, our approach is suitable for the case of helium with two highly excited electrons and is also valid for creating collisions in the gravitational case such as for our solar system.



قيم البحث

اقرأ أيضاً

We introduce and study the mechanical system which describes the dynamics and statics of rigid bodies of constant density floating in a calm incompressible fluid. Since much of the standard equilibrium theory, starting with Archimedes, allows bodies with vertices and edges, we assume the bodies to be convex and take care not to assume more regularity than that implied by convexity. One main result is the (Liapunoff) stability of equilibria satisfying a condition equivalent to the standard metacentric criterion.
Interaction of electromagnetic, acoustic and even gravitational waves with accelerating bodies forms a class of nonstationary time-variant processes. Scattered waves contain intrinsic signatures of motion, which manifest in a broad range of phenomena , including Sagnac interference, Doppler and micro-Doppler frequency shifts. While general relativity is often required to account for motion, instantaneous rest frame approaches are frequently used to describe interactions with slowly accelerating objects. Here we investigate theoretically and experimentally an interaction regime, which is neither relativistic nor adiabatic. The test model considers an accelerating scatterer with a long-lasting relaxation memory. The slow decay rates violate the instantaneous reaction assumption of quasi-stationarity, introducing non-Markovian contributions to the scattering process. Memory signatures in scattering from a rotating dipole are studied theoretically, showing symmetry breaking of micro-Doppler combs. A quasi-stationary numeric analysis of scattering in the short memory limit is proposed and validated experimentally with an example of electromagnetic pulses interacting with a rotating wire.
351 - F Singer 2015
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed by Halevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwells equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the nonlocal modeling deviates from the classical $1/d^2$ law in the nanometerrangeat distances still larger than the ones where quantum effects are expected to come into play.
We investigate energy and momentum non-contact exchanges between two arbitrary flat media separated by a gap. This problem is revisited as a transmission problem of individual system eigenmodes weighted by a transmission probability obtained either f rom fluctuational electrodynamics or quantum field theory. An upper limit for energy and momentum flux is derived using a general variational approach. The corresponding optimal reflectivity coefficients are given both for identical and different media in interaction.
Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals ; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate maps of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution. (abstract abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا