ﻻ يوجد ملخص باللغة العربية
Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate maps of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution. (abstract abridged)
Numerical simulations of the stochastic end stage of planet formation typically begin with a population of embryos and planetesimals that grow into planets by merging. We analyzed the impact parameters of collisions leading to the growth of terrestri
We aim to create deterministic collisions between orbiting bodies by applying a time-dependent external force to one or both bodies, whether the bodies are mutually repulsive, as in the two- or multi-electron atomic case or mutually attractive, as in
Gravity inversion allows us to constrain the interior mass distribution of a planetary body using the observed shape, rotation, and gravity. Traditionally, techniques developed for gravity inversion can be divided into Monte Carlo methods, matrix inv
Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies h
Tidal dissipation is known as one of the main drivers of the secular evolution of planetary systems. It directly results from dissipative mechanisms that occur in planets and stars interiors and strongly depends on the structure and dynamics of the b