ﻻ يوجد ملخص باللغة العربية
The (COVID-19) pandemic-induced restrictions on travel and social gatherings have prompted most conference organizers to move their events online. However, in contrast to physical conferences, virtual conferences face a challenge in efficiently scheduling talks, accounting for the availability of participants from different time-zones as well as their interests in attending different talks. In such settings, a natural objective for the conference organizers would be to maximize some global welfare measure, such as the total expected audience participation across all talks. However, we show that optimizing for global welfare could result in a schedule that is unfair to the stakeholders, i.e., the individual utilities for participants and speakers can be highly unequal. To address the fairness concerns, we formally define fairness notions for participants and speakers, and subsequently derive suitable fairness objectives for them. We show that the welfare and fairness objectives can be in conflict with each other, and there is a need to maintain a balance between these objective while caring for them simultaneously. Thus, we propose a joint optimization framework that allows conference organizers to design talk schedules that balance (i.e., allow trade-offs) between global welfare, participant fairness and the speaker fairness objectives. We show that the optimization problem can be solved using integer linear programming, and empirically evaluate the necessity and benefits of such joint optimization approach in virtual conference scheduling.
Healthcare programs such as Medicaid provide crucial services to vulnerable populations, but due to limited resources, many of the individuals who need these services the most languish on waiting lists. Survival models, e.g. the Cox proportional haza
As a result of the importance of academic collaboration at smart conferences, various researchers have utilized recommender systems to generate effective recommendations for participants. Recent research has shown that the personality traits of users
Disparate access to resources by different subpopulations is a prevalent issue in societal and sociotechnical networks. For example, urban infrastructure networks may enable certain racial groups to more easily access resources such as high-quality s
We study the diffusion of epidemics on networks that are partitioned into local communities. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect tho
Fairness-aware learning involves designing algorithms that do not discriminate with respect to some sensitive feature (e.g., race or gender). Existing work on the problem operates under the assumption that the sensitive feature available in ones trai