ﻻ يوجد ملخص باللغة العربية
Weyl semimetals for their exotic topological properties have drawn considerable attention in many research fields. When in combination with s-wave superconductors, the supercurrent can be carried by their topological surface channels, forming junctions mimic the behavior of Majorana bound states. Here, we present a transmon-like superconducting quantum intereference device (SQUID) consists of lateral junctions made of Weyl semimetal Td-MoTe2 and superconducting leads niobium nitride (NbN). The SQUID is coupled to a readout cavity made of molybdenum rhenium (MoRe), whose response at high power reveal the existence of the constituting Josephson junctions (JJs). The loop geometry of the circuit allows the resonant frequency of the readout cavity to be tuned by the magnetic flux. We demonstrate a JJ made of MoTe2 and a flux-tunable transmon-like circuit based on Weyl materials. Our study provides a platform to utilize topological materials in SQUID-based quantum circuits for potential applications in quantum information processing.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup
We present a feasible protocol to mimic topological Weyl semimetal phase in a small one-dimensional circuit-QED lattice. By modulating the photon hopping rates and on-site photon frequencies in parametric spaces, we demonstrate that the momentum spac
Quantum sensing and computation can be realized with superconducting microwave circuits. Qubits are engineered quantum systems of capacitors and inductors with non-linear Josephson junctions. They operate in the single-excitation quantum regime, phot
One of the main limitations in state-of-the art solid-state quantum processors are qubit decoherence and relaxation due to noise in their local environment. For the field to advance towards full fault-tolerant quantum computing, a better understandin
Magnetic flux tunability is an essential feature in most approaches to quantum computing based on superconducting qubits. Independent control of the fluxes in multiple loops is hampered by crosstalk. Calibrating flux crosstalk becomes a challenging t