ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of surface treatments on flux tunable transmon qubits

370   0   0.0 ( 0 )
 نشر من قبل Matthias Mergenthaler
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the main limitations in state-of-the art solid-state quantum processors are qubit decoherence and relaxation due to noise in their local environment. For the field to advance towards full fault-tolerant quantum computing, a better understanding of the underlying microscopic noise sources is therefore needed. Adsorbates on surfaces, impurities at interfaces and material defects have been identified as sources of noise and dissipation in solid-state quantum devices. Here, we use an ultra-high vacuum package to study the impact of vacuum loading, UV-light exposure and ion irradiation treatments on coherence and slow parameter fluctuations of flux tunable superconducting transmon qubits. We analyse the effects of each of these surface treatments by comparing averages over many individual qubits and measurements before and after treatment. The treatments studied do not significantly impact the relaxation rate $Gamma_1$ and the echo dephasing rate $Gamma_2^textrm{e}$, except for Ne ion bombardment which reduces $Gamma_1$. In contrast, flux noise parameters are improved by removing magnetic adsorbates from the chip surfaces with UV-light and NH$_3$ treatments. Additionally, we demonstrate that SF$_6$ ion bombardment can be used to adjust qubit frequencies in-situ and post fabrication without affecting qubit coherence at the sweet spot.



قيم البحث

اقرأ أيضاً

Superconducting qubits are sensitive to a variety of loss mechanisms including dielectric loss from interfaces. By changing the physical footprint of the qubit it is possible to modulate sensitivity to surface loss. Here we show a systematic study of planar superconducting transmons of differing physical footprints to optimize the qubit design for maximum coherence. We find that qubits with small footprints are limited by surface loss and that qubits with large footprints are limited by other loss mechanisms which are currently not understood.
In this work we analyze the implementation of a control-phase gate through the resonance between the $|11rangle$ and $|20rangle$ states of two statically coupled transmons. We find that there are many different controls for the transmon frequency tha t implement the same gate with fidelities around $99.8%$ ($T_1=T_2^{*}=17$ $mu$s) and $99.99%$ ($T_1=T_2^{*}=300$ $mu$s) within a time that approaches the theoretical limit. All controls can be brought to this accuracy by calibrating the waiting time and the destination frequency near the $|11rangle-|20rangle$ resonance. However, some controls, such as those based on the theory of dynamical invariants, are particularly attractive due to reduced leakage, robustness against decoherence, and their limited bandwidth.
Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, as recently demonstrated in systems of superconducting qubits. However, these qubits have large footprints due to their large capacitor electrodes needed to suppress losses by avoiding dielectric materials. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of the van der Waals (vdW) materials to reduce the qubit area by a factor of $>1000$ while preserving the required capacitance without increasing substantial loss. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide (NbSe$_2$) and insulating hexagonal-boron nitride (hBN). We measure a vdW transmon $T_1$ relaxation time of 1.06 $mu$s, which demonstrates a path to achieve high-qubit-density quantum processors with long coherence times, and illustrates the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.
Quantum computing hardware has received world-wide attention and made considerable progress recently. YIG thin film have spin wave (magnon) modes with low dissipation and reliable control for quantum information processing. However, the coherent coup ling between a quantum device and YIG thin film has yet been demonstrated. Here, we propose a scheme to achieve strong coupling between superconducting flux qubits and magnon modes in YIG thin film. Unlike the direct $sqrt{N}$ enhancement factor in coupling to the Kittel mode or other spin ensembles, with N the total number of spins, an additional spatial dependent phase factor needs to be considered when the qubits are magnetically coupled with the magnon modes of finite wavelength. To avoid undesirable cancelation of coupling caused by the symmetrical boundary condition, a CoFeB thin layer is added to one side of the YIG thin film to break the symmetry. Our numerical simulation demonstrates avoided crossing and coherent transfer of quantum information between the flux qubits and the standing spin waves in YIG thin films. We show that the YIG thin film can be used as a tunable switch between two flux qubits, which have modified shape with small direct inductive coupling between them. Our results manifest that it is possible to couple flux qubits while suppressing undesirable cross-talk.
The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which a re orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا