ﻻ يوجد ملخص باللغة العربية
To clarify the mathematical structure of the RG-derived holographic dual field theory, we rewrite the string-theory based conventionally utilized dual holographic effective field theory based on the ADM decomposition of the metric tensor. This comparison leads us to claim that the RG-derived emergent holographic dual field theory takes into account higher-derivative curvature terms with gauge fixing in the string-theory based conventionally utilized Einstein-Klein-Gordon theory, giving rise to the RG flow of the metric tensor beyond the AdS (anti-de Sitter space) geometry. Furthermore, we compare the Hamilton-Jacobi equation for the effective IR on-shell action of the string-theory based conventionally utilized dual holographic effective theory with that of the RG-based holographic dual field theory. It turns out that the effective IR on-shell action of the string-theory based dual holography can be identified with the IR boundary effective action of the RG-based emergent holographic dual description, where the Wilsonian RG-transformation procedure may be regarded as an inverse process of the holographic renormalization. This demonstration leads us to propose an effective dual holographic field theory with the diffeomorphism invariance and higher derivative curvature terms, where the IR boundary condition is newly introduced to clarify the deep connection between UV microscopic and IR macroscopic degrees of freedom.
Applying recursive renormalization group transformations to a scalar field theory, we obtain an effective quantum gravity theory with an emergent extra dimension, described by a dual holographic Einstein-Klein-Gordon type action. Here, the dynamics o
We discuss the zeroes and poles of the determinant of the retarded Green function ($det G_R$) at zero frequency in a holographic system of charged massless fermions interacting via a dipole coupling. For large negative values of the dipole coupling c
We extend the holographic duality between 3d pure gravity and the 2d Ising CFT proposed in [Phys. Rev. D 85 (2012) 024032] to CFTs with boundaries. Besides the usual asymptotic boundary, the dual bulk spacetime now has a real cutoff, on which live br
We discuss renormalization group approaches to strongly interacting Fermi systems, in the context of Landaus theory of Fermi liquids and functional methods, and their application to neutron matter.
We obtain first order equations that determine a supersymmetric kink solution in five-dimensional N=8 gauged supergravity. The kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-de Sitter regio