ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization Group Flows from Holography--Supersymmetry and a c-Theorem

315   0   0.0 ( 0 )
 نشر من قبل Steven Gubser
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain first order equations that determine a supersymmetric kink solution in five-dimensional N=8 gauged supergravity. The kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in N=4 super-Yang-Mills theory broken to an N=1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed correspondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new N=4 gauged supergravity theory holographically dual to a sector of N=2 gauge theories based on quiver diagrams. We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory. For even-dimensional boundaries, the c-function coincides with the trace anomaly coefficients of the holographically related field theory in limits where conformal invariance is recovered.



قيم البحث

اقرأ أيضاً

Extremal black branes upon compactification in the near horizon throat region are known to give rise to $AdS_2$ dilaton-gravity-matter theories. Away from the throat region, the background has nontrivial profile. We interpret this as holographic reno rmalization group flow in the 2-dim dilaton-gravity-matter theories arising from dimensional reduction of the higher dimensional theories here. The null energy conditions allow us to formulate a holographic c-function in terms of the 2-dim dilaton for which we argue a c-theorem subject to appropriate boundary conditions which amount to restrictions on the ultraviolet theories containing these extremal branes. At the infrared $AdS_2$ fixed point, the c-function becomes the extremal black brane entropy. We discuss the behaviour of this inherited c-function in various explicit examples, in particular compactified nonconformal branes, and compare it with other discussions of holographic c-functions. We also adapt the holographic renormalization group formulated in terms of radial Hamiltonian flow to 2-dim dilaton-gravity-scalar theories, which while not Wilsonian, gives qualitative insight into the flow equations and $beta$-functions.
103 - N.P. Warner 1999
The use of gauged ${cal N} = 8$ supergravity as a tool in studying the AdS/CFT correspondence for ${cal N} = 4$ Yang-Mills theory is reviewed. The supergravity potential implies a non-trivial, supersymmetric IR fixed point, and the flow to this fixed point is described in terms of a supergravity kink. The results agree perfectly with earlier, independent field theory results. A supergravity inspired $c$-function, and corresponding $c$-theorem is discussed for general flows, and the simplified form for supersymmetric flows is also given. Flows along the Coulomb branch of the Yang-Mills theory are also described from the five-dimensional perspective.
Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive explicit expressions in free field theory based on the real time approach. Using monotonicity properties, we obtain new inequalities that need to be satisfied by consistent renormalization group trajectories in field theory. These inequalities play the role of a second law of thermodynamics, in the context of renormalization group flows. Finally, we apply these results to a tractable Kondo model, where we evaluate the Renyi relative entropies explicitly. An outcome of this is that Andersons orthogonality catastrophe can be avoided by working on a Cauchy surface that approaches the light-cone.
We consider N=1 supersymmetric renormalization group flows of N=4 Yang-Mills theory from the perspective of ten-dimensional IIB supergravity. We explicitly construct the complete ten-dimensional lift of the flow in which exactly one chiral superfield becomes massive (the LS flow). We also examine the ten-dimensional metric and dilaton configurations for the ``super-QCD flow (the GPPZ flow) in which all chiral superfields become massive. We show that the latter flow generically gives rise to a dielectric 7-brane in the infra-red, but the solution contains a singularity that may be interpreted as a ``duality averaged ring distribution of 5-branes wrapped on S^2. At special values of the parameters the singularity simplifies to a pair of S-dual branes with (p,q) charge (1,pm 1).
We consider line defects in d-dimensional Conformal Field Theories (CFTs). The ambient CFT places nontrivial constraints on Renormalization Group (RG) flows on such line defects. We show that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We demonstrate our results in a flow between Wilson loops in 4 dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا