ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and Thermoelectric Properties of Few-Layer Transition Metal Dichalcogenides

183   0   0.0 ( 0 )
 نشر من قبل Darshana Wickramaratne
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence band $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.



قيم البحث

اقرأ أيضاً

In this work, we provide an effective model to evaluate the one-electron dipole matrix elements governing optical excitations and the photoemission process of single-layer (SL) and bilayer (BL) transition metal dichalcogenides. By utilizing a $vec{k} cdot vec{p}$ Hamiltonian, we calculate the photoemission intensity as observed in angle-resolved photoemission from the valence bands around the $bar{K}$-valley of MoS$_2$. In SL MoS$_2$ we find a significant masking of intensity outside the first Brillouin zone, which originates from an in-plane interference effect between photoelectrons emitted from the Mo $d$ orbitals. In BL MoS$_2$ an additional inter-layer interference effect leads to a distinctive modulation of intensity with photon energy. Finally, we use the semiconductor Bloch equations to model the optical excitation in a time- and angle-resolved pump-probe photoemission experiment. We find that the momentum dependence of an optically excited population in the conduction band leads to an observable dichroism in both SL and BL MoS$_2$.
GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature $T_c$ well below the melting point. Its consequences on material properties are stud ied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above $T_c$. As the in-plane lattice transforms from a rectangle onto a square at $T_c$, the electronic, spin, optical, and piezo-electric properties dramatically depart from earlier predictions. Indeed, the $Y-$ and $X-$points in the Brillouin zone become effectively equivalent at $T_c$, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at $T_c$. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement has been drawn by theoretical predictions of giant piezo-electricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about $3times 10^{-12}$ $C/K m$ here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides
Antimonene -- a single layer of antimony atoms -- and its few layer forms are among the latest additions to the 2D mono-elemental materials family. Numerous predictions and experimental evidence of its remarkable properties including (opto)electronic , energetic or biomedical, among others, together with its robustness under ambient conditions, have attracted the attention of the scientific community. However, experimental evidence of its electrical properties is still lacking. Here, we characterized the electronic properties of mechanically exfoliated flakes of few-layer (FL) antimonene of different thicknesses (~ 2-40 nm) through photoemission electron microscopy, kelvin probe force microscopy and transport measurements, which allows us to estimate a sheet resistance of ~ 1200 $Omega$sq$^{-1}$ and a mobility of ~ 150 cm$^2$V$^{-1}$s$^{-1}$ in ambient conditions, independent of the flake thickness. Alternatively, our theoretical calculations indicate that topologically protected surface states (TPSS) should play a key role in the electronic properties of FL antimonene, which supports our experimental findings. We anticipate our work will trigger further experimental studies on TPSS in FL antimonene thanks to its simple structure and significant stability in ambient environments.
We present a many-body formalism for the simulation of time-resolved nonlinear spectroscopy and apply it to study the coherent interaction between excitons and trions in doped transition-metal dichalcogenides. Although the formalism can be straightfo rwardly applied in a first-principles manner, for simplicity we use a parameterized band structure and a static model dielectric function, both of which can be obtained from a calculation using the $GW$ approximation. Our simulation results shed light on the interplay between singlet and triplet trions in molybdenum- and tungsten-based compounds. Our two-dimensional electronic spectra are in excellent agreement with recent experiments and we accurately reproduce the beating of a cross-peak signal indicative of quantum coherence between excitons and trions. Although we confirm that the quantum beats in molybdenum-based monolayers unambigously reflect the exciton-trion coherence time, they are shown here to provide a lower-bound to the coherence time of tungsten analogues due to a destructive interference emerging from coexisting singlet and triplet trions.
Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal di chalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here we review recent progress in our understanding of the excitonic properties in monolayer TMDs and lay out future challenges. We focus on the consequences of the strong direct and exchange Coulomb interaction, discuss exciton-light interaction and effects of other carriers and excitons on electron-hole pairs in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا