ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian semiparametric modelling of covariance matrices for multivariate longitudinal data

155   0   0.0 ( 0 )
 نشر من قبل Georgios Papageorgiou
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decompositions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years



قيم البحث

اقرأ أيضاً

We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contamin ated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.
This article presents an approach to Bayesian semiparametric inference for Gaussian multivariate response regression. We are motivated by various small and medium dimensional problems from the physical and social sciences. The statistical challenges revolve around dealing with the unknown mean and variance functions and in particular, the correlation matrix. To tackle these problems, we have developed priors over the smooth functions and a Markov chain Monte Carlo algorithm for inference and model selection. Specifically, Dirichlet process mixtures of Gaussian distributions are used as the basis for a cluster-inducing prior over the elements of the correlation matrix. The smooth, multidimensional means and variances are represented using radial basis function expansions. The complexity of the model, in terms of variable selection and smoothness, is then controlled by spike-slab priors. A simulation study is presented, demonstrating performance as the response dimension increases. Finally, the model is fit to a number of real world datasets. An R package, scripts for replicating synthetic and real data examples, and a detailed description of the MCMC sampler are available in the supplementary materials online.
We consider the problem of multivariate density deconvolution where the distribution of a random vector needs to be estimated from replicates contaminated with conditionally heteroscedastic measurement errors. We propose a conceptually straightforwar d yet fundamentally novel and highly robust approach to multivariate density deconvolution by stochastically rotating the replicates toward the corresponding true latent values. We also address the additionally significantly challenging problem of accommodating conditionally heteroscedastic measurement errors in this newly introduced framework. We take a Bayesian route to estimation and inference, implemented via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncertainty in all aspects of our analysis. Asymptotic convergence guarantees for the method are also established. We illustrate the methods empirical efficacy through simulation experiments and its practical utility in estimating the long-term joint average intakes of different dietary components from their measurement error contaminated 24-hour dietary recalls.
Understanding how adult humans learn non-native speech categories such as tone information has shed novel insights into the mechanisms underlying experience-dependent brain plasticity. Scientists have traditionally examined these questions using long itudinal learning experiments under a multi-category decision making paradigm. Drift-diffusion processes are popular in such contexts for their ability to mimic underlying neural mechanisms. Motivated by these problems, we develop a novel Bayesian semiparametric inverse Gaussian drift-diffusion mixed model for multi-alternative decision making in longitudinal settings. We design a Markov chain Monte Carlo algorithm for posterior computation. We evaluate the methods empirical performances through synthetic experiments. Applied to our motivating longitudinal tone learning study, the method provides novel insights into how the biologically interpretable model parameters evolve with learning, differ between input-response tone combinations, and differ between well and poorly performing adults.
Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive $Delta$-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rats local field potential activity in a complex sequence memory task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا