ترغب بنشر مسار تعليمي؟ اضغط هنا

Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems

138   0   0.0 ( 0 )
 نشر من قبل Tianle Cai
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

First-order methods such as stochastic gradient descent (SGD) are currently the standard algorithm for training deep neural networks. Second-order methods, despite their better convergence rate, are rarely used in practice due to the prohibitive computational cost in calculating the second-order information. In this paper, we propose a novel Gram-Gauss-Newton (GGN) algorithm to train deep neural networks for regression problems with square loss. Our method draws inspiration from the connection between neural network optimization and kernel regression of neural tangent kernel (NTK). Different from typical second-order methods that have heavy computational cost in each iteration, GGN only has minor overhead compared to first-order methods such as SGD. We also give theoretical results to show that for sufficiently wide neural networks, the convergence rate of GGN is emph{quadratic}. Furthermore, we provide convergence guarantee for mini-batch GGN algorithm, which is, to our knowledge, the first convergence result for the mini-batch version of a second-order method on overparameterized neural networks. Preliminary experiments on regression tasks demonstrate that for training standard networks, our GGN algorithm converges much faster and achieves better performance than SGD.



قيم البحث

اقرأ أيضاً

We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is fur ther combined with adaptive methods to construct ARSG for acceleration. The method is efficient in computation and memory, and is straightforward to implement. We analyze the convergence properties by modeling the training process as a dynamic system, which provides a guideline to select the configurable observation factor without grid search. ARSG yields $O(1/sqrt{T})$ convergence rate in non-convex settings, that can be further improved to $O(log(T)/T)$ in strongly convex settings. Numerical experiments demonstrate that ARSG achieves both faster convergence and better generalization, compared with popular adaptive methods, such as ADAM, NADAM, AMSGRAD, and RANGER for the tested problems. In particular, for training ResNet-50 on ImageNet, ARSG outperforms ADAM in convergence speed and meanwhile it surpasses SGD in generalization.
281 - Alexander Immer 2020
In this thesis, we disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning. The generalized Gauss-Newton method is an optimization method that is used in several popular Bayesian deep learning algorithms. Algorit hms that combine the Gauss-Newton method with the Laplace and Gaussian variational approximation have recently led to state-of-the-art results in Bayesian deep learning. While the Laplace and Gaussian variational approximation have been studied extensively, their interplay with the Gauss-Newton method remains unclear. Recent criticism of priors and posterior approximations in Bayesian deep learning further urges the need for a deeper understanding of practical algorithms. The individual analysis of the Gauss-Newton method and Laplace and Gaussian variational approximations for neural networks provides both theoretical insight and new practical algorithms. We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly. In particular, the combination of the Gauss-Newton method with approximate inference can be cast as inference in a linear or Gaussian process model. The Laplace and Gaussian variational approximation can subsequently provide a posterior approximation to these simplified models. This new disentangled understanding of recent Bayesian deep learning algorithms also leads to new methods: first, the connection to Gaussian processes enables new function-space inference algorithms. Second, we present a marginal likelihood approximation of the underlying probabilistic model to tune neural network hyperparameters. Finally, the identified underlying models lead to different methods to compute predictive distributions. In fact, we find that these prediction methods for Bayesian neural networks often work better than the default choice and solve a common issue with the Laplace approximation.
The earth system is exceedingly complex and often chaotic in nature, making prediction incredibly challenging: we cannot expect to make perfect predictions all of the time. Instead, we look for specific states of the system that lead to more predicta ble behavior than others, often termed forecasts of opportunity. When these opportunities are not present, scientists need prediction systems that are capable of saying I dont know. We introduce a novel loss function, termed abstention loss, that allows neural networks to identify forecasts of opportunity for regression problems. The abstention loss works by incorporating uncertainty in the networks prediction to identify the more confident samples and abstain (say I dont know) on the less confident samples. The abstention loss is designed to determine the optimal abstention fraction, or abstain on a user-defined fraction via a PID controller. Unlike many methods for attaching uncertainty to neural network predictions post-training, the abstention loss is applied during training to preferentially learn from the more confident samples. The abstention loss is built upon a standard computer science method. While the standard approach is itself a simple yet powerful tool for incorporating uncertainty in regression problems, we demonstrate that the abstention loss outperforms this more standard method for the synthetic climate use cases explored here. The implementation of proposed loss function is straightforward in most network architectures designed for regression, as it only requires modification of the output layer and loss function.
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesnt the trained network overfit when it is overparameterized? In this work, we prove that overparamete rized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
86 - Hengyue Pan , Hui Jiang , Xin Niu 2018
The past few years have witnessed the fast development of different regularization methods for deep learning models such as fully-connected deep neural networks (DNNs) and Convolutional Neural Networks (CNNs). Most of previous methods mainly consider to drop features from input data and hidden layers, such as Dropout, Cutout and DropBlocks. DropConnect select to drop connections between fully-connected layers. By randomly discard some features or connections, the above mentioned methods control the overfitting problem and improve the performance of neural networks. In this paper, we proposed two novel regularization methods, namely DropFilter and DropFilter-PLUS, for the learning of CNNs. Different from the previous methods, DropFilter and DropFilter-PLUS selects to modify the convolution filters. For DropFilter-PLUS, we find a suitable way to accelerate the learning process based on theoretical analysis. Experimental results on MNIST show that using DropFilter and DropFilter-PLUS may improve performance on image classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا