ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping profile engineered triple heterojunction TFETs with 12 nm body thickness

366   0   0.0 ( 0 )
 نشر من قبل Chin-Yi Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Triple heterojunction (THJ) TFETs have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12 nm body thickness has poor performance, because its sub-threshold swing is 50 mV/dec and the ON-current is only 6 $mu A/mu m$. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows a sub-threshold swing of 40 mV/dec over four orders of drain current and an ON-current of 325 uA/um with VGS = 0.3 V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.



قيم البحث

اقرأ أيضاً

The triple heterojunction TFET has been originally proposed to resolve TFETs low ON-current challenge. The carrier transport in such devices is complicated due to the presence of quantum wells and strong scattering. Hence, the full band atomistic NEG F approach, including scattering, is required to model the carrier transport accurately. However, such simulations for devices with realistic dimensions are computationally unfeasible. To mitigate this issue, we have employed the empirical tight-binding mode space approximation to simulate triple heterojunction TFETs with the body thickness up to 12 nm. The triple heterojunction TFET design is optimized using the model to achieve a sub-60mV/dec transfer characteristic under realistic scattering conditions.
2D material based tunnel FETs are among the most promising candidates for low power electronics applications since they offer ultimate gate control and high current drives that are achievable through small tunneling distances during the device operat ion. The ideal device is characterized by a minimized tunneling distance. However, devices with the thinnest possible body do not necessarily provide the best performance. For example, reducing the channel thickness increases the depletion width in the source which can be a significant part of the total tunneling distance. Hence, it is important to determine the optimum channel thickness for each channel material individually. In this work, we study the optimum channel thickness for three channel materials: WSe$_{2}$, Black Phosphorus (BP), and InAs using full-band self-consistent quantum transport simulations. To identify the ideal channel thickness for each material at a specific doping density, a new analytic model is proposed and benchmarked against the numerical simulations.
We propose a new triple-junction solar cell structure composed of a III-V heterojunction bipolar transistor solar cell (HBTSC) stacked on top of, and series-connected to, a Si solar cell (III-V-HBTSC-on-Si). The HBTSC is a novel three-terminal device , whose viability has been recently experimentally demonstrated. It has the theoretical efficiency limit of an independently-connected double-junction solar cell. Here, we perform detailed balance efficiency limit calculations under one-sun illumination that show that the absolute efficiency limit of a III-V-HBTSC-on-Si device is the same as for the conventional current-matched III-V-on-Si triple-junction (47% assuming black-body spectrum, 49% with AM1.5G). However, the range of band-gap energies for which the efficiency limit is above 40% is much wider in the III-V-HBTSC-on-Si stack case. From a technological point of view, the lattice-matched GaInP/GaAs combination is particularly interesting, which has an AM1.5G efficiency limit of 47% with the HBTSC-on-Si structure and 39% if the current-matched III-V-on-Si triple junction is considered. Moreover, we show that interconnecting the terminals of the HBTSC to achieve a two-terminal GaInP/GaAs-HBTSC-on-Si device only reduces the efficiency limit by three points, to 43%. As a result, the GaInP/GaAs-HBTSC-on-Si solar cell becomes a promising device for two-terminal, high-efficiency one-sun operation. For it to also be cost-effective, low-cost technologies must be applied to the III-V material growth, such as high-throughput epitaxy or sequential growth.
In this paper, we report enhanced breakdown characteristics of Pt/BaTiO3/Al0.58Ga0.42N lateral heterojunction diodes compared to Pt/Al0.58Ga0.42N Schottky diodes. BaTiO3, an extreme dielectric constant material, has been used, in this study, as diele ctric material under the anode to significantly reduce the peak electric field at the anode edge of the heterojunction diode such that the observed average breakdown field was higher than 8 MV/cm, achieved for devices with anode to cathode spacing less than 0.2 microns. Control Schottky anode devices (Pt/Al0.58Ga0.42N) fabricated on the same sample displayed an average breakdown field around 4 MV/cm for devices with similar dimensions. While both breakdown fields are significantly higher than those exhibited by incumbent technologies such as GaN-based devices, BaTiO3 can enable more effective utilization of the higher breakdown fields available in ultra-wide bandgap materials by proper electric field management. This demonstration thus lays the groundwork needed to realize ultra-scaled lateral devices with significantly improved breakdown characteristics.
We report on the design and demonstration of ${beta}-(Al_{0.18}Ga_{0.82})_2O_3/Ga_2O_3$ modulation doped heterostructures to achieve high sheet charge density. The use of a thin spacer layer between the Si delta-doping and heterojunction interface wa s investigated in ${beta}-(Al_{0.18}Ga_{0.82})_2O_3/Ga_2O_3$ modulation doped structures. We find that that this strategy enables higher 2DEG sheet charge density up to 6.1x10^12 cm^2 with mobility of 147 cm^2/Vs. The presence of a degenerate 2DEG channel was confirmed by the measurement of low temperature effective mobility of 378 cm^2/V-s and a lack of carrier freeze out from low temperature capacitance voltage measurements. The electron density of 6.1x10^12 cm^2 is the highest reported sheet charge density obtained without parallel conduction channels in an $(Al_{0.18}Ga_{0.82})_2O_3/Ga_2O_3$ heterostructure system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا