ﻻ يوجد ملخص باللغة العربية
We study the existence and stability of the standing waves for the periodic cubic nonlinear Schrodinger equation with a point defect determined by a periodic Dirac distribution at the origin. This equation admits a smooth curve of positive periodic solutions in the form of standing waves with a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and continuation argument, we obtain that in the case of an attractive defect the standing wave solutions are stable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even functions of $H^1_{per}$ and unstable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself.
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linear
We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet (Neumann) boundary datum which for large $t$ tends to the periodic function $g_0^b(t)$ ($g_1^b(t)$). Assuming that the unknown Neumann (Dirichlet) boundary value t
We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet boundary datum which for large $t$ tends to a periodic function. We assume that this function is sufficiently small, namely that it can be expressed in the form $a
We consider solutions of the defocusing nonlinear Schrodinger (NLS) equation on the half-line whose Dirichlet and Neumann boundary values become periodic for sufficiently large $t$. We prove a theorem which, modulo certain assumptions, characterizes
We present a numerical study of solutions to the $2d$ focusing nonlinear Schrodinger equation in the exterior of a smooth, compact, strictly convex obstacle, with Dirichlet boundary conditions with cubic and quintic powers of nonlinearity. We study t