ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Mg II and Fe II Absorbers at 2.2 < z < 6.0

140   0   0.0 ( 0 )
 نشر من قبل Siwei Zou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of strong intervening absorption systems in the near-IR spectra of 31 luminous quasars at $z>5.7$. The quasar spectra were obtained with {it Gemini} GNIRS that provide continuous wavelength coverage from $sim$0.9 to $sim$2.5 $mu$m. We detect 32 strong Mg II doublet absorbers with rest-frame equivalent width $W_r$ ($lambda2796$) $>1.0$ AA at $2.2 < z < 6.0$. Each Mg II absorber is confirmed by at least two associated Fe II absorption lines in the rest-frame wavelength range of $sim 1600-2600$ AA. We find that the comoving line density ($dN/dX$) of the strong Fe II-bearing Mg II absorbers decreases towards higher redshift at $z>3$, consistent with previous studies. Compared with strong Mg II absorbers detected in damped Ly$alpha$ systems at 2 $<z<$ 4, our absorbers are potentially less saturated and show much larger rest-frame velocity widths. This suggests that the gas traced by our absorbers are potentially affected by galactic superwinds. We analyze the {it Hubble Space Telescope} near-IR images of the quasars and identify possible associated galaxies for our strong absorbers. There are a maximum of two galaxy candidates found within 5 radius of each absorber. The median F105W-band magnitude of these galaxy candidates is 24.8 mag, which is fainter than the $L^*$ galaxy luminosity at $zsim$ 4. By using our observed $dN/dX$ of strong Mg II absorbers and galaxy candidates median luminosity, we suggest that at high redshift, strong Mg II absorbers tend to have a more disturbed environment but smaller halo size than that at $z <$ 1.



قيم البحث

اقرأ أيضاً

We investigate the effect of Fe II equivalent width ($W_{2600}$) and fibre size on the average luminosity of [O II]$lambdalambda$3727,3729 nebular emission associated with Mg II absorbers (at $0.55 le z le 1.3$) in the composite spectra of quasars ob tained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L$_{[rm O~II]}$) and equivalent width ($W_{2796}$) and redshift of Mg II absorbers. However, we show L$_{[rm O~II]}$ and average luminosity surface density suffers from fibre size effects. More importantly, for a given fibre size the average L$_{[rm O~II]}$ strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with $R equiv$ $W_{rm 2600}/W_{rm 2796}$ $ge 0.5$. In fact, we show the observed strong correlations of L$_{[rm O~II]}$ with $W_{2796}$ and $z$ of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L$_{[rm O~II]}$ and $R$. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on $W_{2600}$ before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e., detections $ge 3 sigma$ significant level). On an average the systems with $R$ $ge 0.5$ and $W_{2796}$ $ge 2$ AA are more reddened, showing colour excess E($B-V$) $sim$ 0.02, with respect to the systems with $R$ $< 0.5$ and most likely traces the high H I column density systems.
146 - Sowgat Muzahid 2017
We present a sample of 34 weak metal line absorbers at $z< 0.3$ complied via the simultaneous detections ($3sigma$) of the SiII$lambda1260$ and CII$lambda1334$ absorption lines, with $W_{r}$(SiII)$<0.2$ AA and $W_{r}$(CII)$<0.3$ AA, in archival HST/C OS spectra. Our sample increases the number of known low-$z$ weak absorbers by a factor of $>5$. The column densities of HI and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models using CLOUDY. The inferred densities and total hydrogen column densities are in the ranges of $-3.3 < log n_{rm H}/{rm cm^{-3}} < -2.4$ and $16.0 < log N_{rm H}/{rm cm^{-2}}<20.3$, respectively. The line of sight thicknesses of the absorbers have a wide range of $sim$1 pc$-$50 kpc with a median value of $sim$500 pc. The high-ionization OVI absorption, detected in 12/18 cases, always stems from a different gas-phase. Most importantly, 85% (50%) of these absorbers show a metallicity of $rm [Si/H] > -1.0$ (0.0). The fraction of systems showing high metallicity (i.e., $rm [Si/H]>-1.0$) in our sample is significantly higher than the HI-selected sample (Wotta et al. 2016) and the galaxy-selected sample (Prochaska et al. 2017) of absorbers probing the circum-galactic medium (CGM) at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random places with a median impact parameter of 166 kpc to the nearest galaxy. Moreover, we find the presence of multiple galaxies in $sim80$% of the cases, suggesting group environments. The observed $dmathcal{N}/dz$ of $0.8pm0.2$ indicates that such metal-enriched, compact, dense structures are ubiquitous in the halos of low-$z$ galaxies that are in groups. We suggest that these are transient structures that are related to outflows and/or stripping of metal-rich gas from galaxies.
We present nebular emission associated with 198 strong Mg II absorbers at 0.35 $le z le$ 1.1 in the fibre spectra of quasars from the Sloan Digital Sky Survey. Measured [O II] luminosities (L$_{[O II]}$) are typical of sub-L$^{star}$ galaxies with de rived star formation rate (uncorrected for fibre losses and dust reddening) in the range of 0.5-20 ${rm M_odot yr^{-1}}$. Typically less than $sim$ 3% of the Mg II systems with rest equivalent width, $W_{2796}$ $ge$ 2 AA, show L$_{[O II]} ge 0.3$ L$^{star}_{[O II]}$. The detection rate is found to increase with increasing $W_{2796}$ and $z$. No significant correlation is found between $W_{2796}$ and L$_{[O II]}$ even when we restrict the samples to narrow $z$-ranges. A strong correlation is seen between L$_{[O II]}$ and $z$. While this is expected from the luminosity evolution of galaxies, we show finite fibre size plays a very crucial role in this correlation. The measured nebular line ratios (like [O III]/[O II] and [O III]/H$beta$) and their $z$ evolution are consistent with those of galaxies detected in deep surveys. Based on the median stacked spectra, we infer the average metallicity (log Z $sim$8.3), ionization parameter (log $q$ $sim$7.5) and stellar mass (log (M/M$_odot$)$sim$9.3). The Mg II systems with nebular emission typically have $W_{2796}$ $ge 2$ AA, Mg II doublet ratio close to 1 and W(Fe II$lambda$2600)/$W_{2796}$ $sim 0.5$ as often seen in damped Ly$alpha$ and 21-cm absorbers at these redshifts. This is the biggest reported sample of [O II] emission from Mg II absorbers at low impact parameters ideally suited for probing various feedback processes at play in $zle 1$ galaxies.
To investigate the chemical abundance of broad-line region clouds in quasars at high redshifts, we performed near-infrared spectroscopy of six luminous quasars at z ~ 2.7 with the WINERED spectrograph mounted on the New Technology Telescope (NTT) at the La Silla Observatory, Chile. The measured Fe II/Mg II flux ratios nearly matched with the published data for 0.7 < z < 1.6, suggesting that there is no evolution over a long period of cosmic time, which is consistent with previous studies. To derive the chemical abundances from the measured equivalent widths (EWs), their dependence on nonabundance factors must be corrected. In our previous paper, we proposed a method to derive the [Mg/Fe] abundance ratio and the [Fe/H] abundance by correcting the dependence of EW(Mg II) and EW(Fe II) on the Eddington ratio. To the best of our knowledge, that was the first report to discuss the star-formation history through a direct comparison with chemical evolution models. In the present study, we further investigated the dependence of EWs on luminosity, which is known as the Baldwin effect (BEff). Additional correction for the BEff significantly affects the derived chemical abundances for the six luminous quasars at z ~ 2.7, and the resultant abundances agree well with the prediction of chemical evolution models. Given that most distant quasars found thus far are biased toward luminous ones, the correction of the measured EWs for the BEff is crucial for extending the chemical evolution study to higher redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا