ترغب بنشر مسار تعليمي؟ اضغط هنا

COS-Weak: Probing the CGM using analogs of weak Mg II absorbers at z < 0.3

147   0   0.0 ( 0 )
 نشر من قبل Sowgat Muzahid Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sowgat Muzahid




اسأل ChatGPT حول البحث

We present a sample of 34 weak metal line absorbers at $z< 0.3$ complied via the simultaneous detections ($3sigma$) of the SiII$lambda1260$ and CII$lambda1334$ absorption lines, with $W_{r}$(SiII)$<0.2$ AA and $W_{r}$(CII)$<0.3$ AA, in archival HST/COS spectra. Our sample increases the number of known low-$z$ weak absorbers by a factor of $>5$. The column densities of HI and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models using CLOUDY. The inferred densities and total hydrogen column densities are in the ranges of $-3.3 < log n_{rm H}/{rm cm^{-3}} < -2.4$ and $16.0 < log N_{rm H}/{rm cm^{-2}}<20.3$, respectively. The line of sight thicknesses of the absorbers have a wide range of $sim$1 pc$-$50 kpc with a median value of $sim$500 pc. The high-ionization OVI absorption, detected in 12/18 cases, always stems from a different gas-phase. Most importantly, 85% (50%) of these absorbers show a metallicity of $rm [Si/H] > -1.0$ (0.0). The fraction of systems showing high metallicity (i.e., $rm [Si/H]>-1.0$) in our sample is significantly higher than the HI-selected sample (Wotta et al. 2016) and the galaxy-selected sample (Prochaska et al. 2017) of absorbers probing the circum-galactic medium (CGM) at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random places with a median impact parameter of 166 kpc to the nearest galaxy. Moreover, we find the presence of multiple galaxies in $sim80$% of the cases, suggesting group environments. The observed $dmathcal{N}/dz$ of $0.8pm0.2$ indicates that such metal-enriched, compact, dense structures are ubiquitous in the halos of low-$z$ galaxies that are in groups. We suggest that these are transient structures that are related to outflows and/or stripping of metal-rich gas from galaxies.



قيم البحث

اقرأ أيضاً

We present a study of strong intervening absorption systems in the near-IR spectra of 31 luminous quasars at $z>5.7$. The quasar spectra were obtained with {it Gemini} GNIRS that provide continuous wavelength coverage from $sim$0.9 to $sim$2.5 $mu$m. We detect 32 strong Mg II doublet absorbers with rest-frame equivalent width $W_r$ ($lambda2796$) $>1.0$ AA at $2.2 < z < 6.0$. Each Mg II absorber is confirmed by at least two associated Fe II absorption lines in the rest-frame wavelength range of $sim 1600-2600$ AA. We find that the comoving line density ($dN/dX$) of the strong Fe II-bearing Mg II absorbers decreases towards higher redshift at $z>3$, consistent with previous studies. Compared with strong Mg II absorbers detected in damped Ly$alpha$ systems at 2 $<z<$ 4, our absorbers are potentially less saturated and show much larger rest-frame velocity widths. This suggests that the gas traced by our absorbers are potentially affected by galactic superwinds. We analyze the {it Hubble Space Telescope} near-IR images of the quasars and identify possible associated galaxies for our strong absorbers. There are a maximum of two galaxy candidates found within 5 radius of each absorber. The median F105W-band magnitude of these galaxy candidates is 24.8 mag, which is fainter than the $L^*$ galaxy luminosity at $zsim$ 4. By using our observed $dN/dX$ of strong Mg II absorbers and galaxy candidates median luminosity, we suggest that at high redshift, strong Mg II absorbers tend to have a more disturbed environment but smaller halo size than that at $z <$ 1.
We present an analysis of the chemical and ionization conditions in a sample of 100 weak Mg II absorbers identified in the VLT/UVES archive of quasar spectra. Using a host of low ionization lines associated with each absorber in this sample, and on t he basis of ionization models, we infer that the metallicity in a significant fraction of weak Mg II clouds is constrained to values of solar or higher, if they are sub-Lyman limit systems. Based on the observed constraints, we present a physical picture in which weak Mg II absorbers are predominantly tracing two different astrophysical processes/structures. A significant population of weak Mg II clouds, those in which N(Fe II) is much less than N(Mg II), identified at both low (z ~ 1) and high (z ~ 2) redshift, are potentially tracing gas in the extended halos of galaxies, analogous to the Galactic high velocity clouds. These absorbers might correspond to alpha-enhanced interstellar gas expelled from star-forming galaxies, in correlated supernova events. On the other hand, N(FeII) approximately equal to N(Mg II) clouds, which are prevalent only at lower redshifts (z < 1.5), must be tracing Type Ia enriched gas in small, high metallicity pockets in dwarf galaxies, tidal debris, or other intergalactic structures.
Through photoionization modeling, constraints on the physical conditions of three z ~ 1.7 single-cloud weak Mg II systems (W_r(2796) < 0.3A) are derived. Constraints are provided by high resolution R = 45,000, high signal-to-noise spectra of the thre e quasars HE0141-3932, HE0429-4091, and HE2243-6031 which we have obtained from the ESO archive of VLT/UVES. Results are as follows: (1) The single-cloud weak Mg II absorption in the three z ~ 1.7 systems is produced by clouds with ionization parameters of -3.8 < logU < -2.0 and sizes of 1-100 pc. (2) In addition to the low-ionization phase Mg II clouds, all systems need an additional 1-3 high-ionization phase C IV clouds within 100 km/s of the Mg II component. The ionization parameters of the C IV phases range from -1.9 < logU < -1.0, with sizes of tens of parsecs to kiloparsecs. (3) Two of the three single-cloud weak Mg II absorbers have near-solar or super-solar metallicities, if we assume a solar abundance pattern. Although such large metallicities have been found for z < 1 weak Mg II absorbers, these are the first high metallicities derived for such systems at higher redshifts. (4) Two of the three weak Mg II systems also need additional low-metallicity, broad Lya absorption lines, offset in velocity from the metal-line absorption, in order to reproduce the full Lya profile. (5) Metallicity in single-cloud weak Mg II systems are more than an order of magnitude larger than those in Damped Lya systems at z ~ 1.7. In fact, there appears to be a gradual decrease in metallicity with increasing N(HI), from these, the most metal-rich Lya forest clouds, to Lyman limit systems, to sub-DLAs, and finally to the DLAs.
We present results from a survey of weak MgII absorbers in the VLT/UVES spectra of 81 QSOs obtained from the ESO archive. In this survey, we identified 112 weak MgII systems within the redshift interval 0.4 < z < 2.4 with 86% completeness down to a r est-frame equivalent width of W_r(2796) = 0.02A, covering a cumulative redshift path length of deltaZ=77.3. From this sample, we estimate that the number of weak absorbers per unit redshift dN/dz increases from 1.06 +/- 0.04 at <z>=1.9 to 1.76 +/- 0.08 at <z>=1.2 and thereafter decreases to 1.51 +/- 0.09 at <z>=0.9 and 1.06 +/- 0.10 at <z>=0.6. Thus we find evidence for an evolution in the population of weak MgII absorbers, with their number density peaking at z=1.2. We also determine the equivalent width distribution of weak systems at <z>=0.9 and <z>=1.9. At 0.4 < z < 1.4, there is evidence for a turnover from a powerlaw of the form n(W_r) propto W_r^{-1.04} at W_r(2796) < 0.1A. This turnover is more extreme at 1.4 < z < 2.4, where the equivalent width distribution is close to an extrapolation of the exponential distribution function found for strong MgII absorbers. Based on these results, we discuss the possibility that some fraction of weak MgII absorbers, particularly single cloud systems, are related to satellite clouds surrounding strong MgII systems. These structures could also be analogs to Milky Way high velocity clouds. In this context, the paucity of high redshift weak MgII absorbers is caused by a lack of isolated accreting clouds on to galaxies during that epoch.
The complex structure of gas, metals, and dust in the interstellar and circumgalactic medium (ISM and CGM, respectively) in star-forming galaxies can be probed by Ly$alpha$ emission and absorption, low-ionization interstellar (LIS) metal absorption, and dust reddening E(B-V). We present a statistical analysis of the mutual correlations among Ly$alpha$ equivalent width (EW$_{Lyalpha}$), LIS equivalent width (EW$_{LIS}$), and E(B-V) in a sample of 157 star-forming galaxies at $zsim2.3$. With measurements obtained from individual, deep rest-UV spectra and spectral-energy distribution (SED) modeling, we find that the tightest correlation exists between EW$_{LIS}$ and E(B-V), although correlations among all three parameters are statistically significant. These results signal a direct connection between dust and metal-enriched HI gas, and that they are likely co-spatial. By comparing our results with the predictions of different ISM/CGM models, we favor a dusty ISM/CGM model where dust resides in HI gas clumps and Ly$alpha$ photons escape through the low HI covering fraction/column density intra-clump medium. Finally, we investigate the factors that potentially contribute to the intrinsic scatter in the correlations studied in this work, including metallicity, outflow kinematics, Ly$alpha$ production efficiency, and slit loss. Specifically, we find evidence that scatter in the relationship between EW$_{Lyalpha}$ and E(B-V) reflects the variation in metal-to-HI covering fraction ratio as a function of metallicity, and the effects of outflows on the porosity of the ISM/CGM. Future simulations incorporating star-formation feedback and the radiative transfer of Ly$alpha$ photons will provide key constraints on the spatial distributions of neutral hydrogen gas and dust in the ISM/CGM structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا