ترغب بنشر مسار تعليمي؟ اضغط هنا

Shedding light on the angular momentum evolution of binary neutron star merger remnants: a semi-analytic model

92   0   0.0 ( 0 )
 نشر من قبل Matteo Lucca
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main features of the gravitational dynamics of binary neutron star systems are now well established. While the inspiral can be precisely described in the post-Newtonian approximation, fully relativistic magneto-hydrodynamical simulations are required to model the evolution of the merger and post-merger phase. However, the interpretation of the numerical results can often be non-trivial, so that toy models become a very powerful tool. Not only do they simplify the interpretation of the post-merger dynamics, but also allow to gain insights into the physics behind it. In this work, we construct a simple toy model that is capable of reproducing the whole angular momentum evolution of the post-merger remnant, from the merger to the collapse. We validate the model against several fully general-relativistic numerical simulations employing a genetic algorithm, and against additional constraints derived from the spectral properties of the gravitational radiation. As a result, from the remarkably close overlap between the model predictions and the reference simulations within the first milliseconds after the merger, we are able to systematically shed light on the currently open debate regarding the source of the low-frequency peaks of the gravitational wave power spectral density. Additionally, we also present two original relations connecting the angular momentum of the post-merger remnant at merger and collapse to initial properties of the system.



قيم البحث

اقرأ أيضاً

Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
The threshold mass for prompt collapse in binary neutron star mergers was empirically found to depend on the stellar properties of the maximum-mass non-rotating neutron star model. Here we present a semi-analytic derivation of this empirical relation which suggests that it is rather insensitive to thermal effects, to deviations from axisymmetry and to the exact rotation law in merger remnants. We utilize axisymmetric, cold equilibrium models with differential rotation and determine the threshold mass for collapse from the comparison between an empirical relation that describes the angular momentum in the remnant for a given total binary mass and the sequence of rotating equilibrium models at the threshold to collapse (the latter assumed to be near the turning point of fixed-angular-momentum sequences). In spite of the various simplifying assumptions, the empirical relation for prompt collapse is reproduced with good accuracy, which demonstrates its robustness. We discuss implications of our methodology and results for understanding other empirical relations satisfied by neutron-star merger remnants that have been discovered by numerical simulations and that play a key role in constraining the high-density equation of state through gravitational-wave observations.
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagne tic observations of the binary neutron star merger GW170817 gave invaluable insights into these cataclysmic collisions, probing bulk nuclear matter at supranuclear densities, the jet structure of gamma-ray bursts, the speed of gravity, and the cosmological evolution of the local Universe, among other things. Despite the wealth of information, it is still unclear when the remnant of GW170817 collapsed to form a black hole. Evidence from other short gamma-ray bursts indicates a large fraction of mergers may form long-lived neutron stars. We review what is known observationally and theoretically about binary neutron star post-merger remnants. From a theoretical perspective, we review our understanding of the evolution of short- and long-lived merger remnants, including fluid, magnetic-field, and temperature evolution. These considerations impact prospects of detection of gravitational waves from either short- or long-lived neutron star remnants which potentially allows for new probes into the hot nuclear equation of state in conditions inaccessible in terrestrial experiments. We also review prospects for determining post-merger physics from current and future electromagnetic observations, including kilonovae and late-time x-ray and radio afterglow observations.
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946$+$2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946$+$2052 is a 17-ms pulsar in a 1.88-hour, eccentric ($e , =, 0.06$) orbit with a $gtrsim 1.2 , M_odot$ companion. We have used the Jansky Very Large Array to localize PSR J1946$+$2052 to a precision of 0.09 arcseconds using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar ($dot{P} , = , 9,pm , 2 ,times 10^{-19}$); the small inferred magnetic field strength at the surface ($B_S , = , 4 , times , 10^9 , rm G$) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946$+$2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946$+$2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, $dot{omega} , = , 25.6 , pm , 0.3, deg rm yr^{-1}$, implying a total system mass of only 2.50 $pm$ 0.04 $M_odot$, so it is among the lowest mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to $lesssim 1.3 , M_odot$.
We present a rapid analytic framework for predicting kilonova light curves following neutron star (NS) mergers, where the main input parameters are binary-based properties measurable by gravitational wave detectors (chirp mass and mass ratio, orbital inclination) and properties dependent on the nuclear equation of state (tidal deformability, maximum NS mass). This enables synthesis of a kilonova sample for any NS source population, or determination of the observing depth needed to detect a live kilonova given gravitational wave source parameters in low latency. We validate this code, implemented in the public MOSFiT package, by fitting it to GW170817. A Bayes factor analysis overwhelmingly ($B>10^{10}$) favours the inclusion of an additional luminosity source in addition to lanthanide-poor dynamical ejecta during the first day. This is well fit by a shock-heated cocoon model, though differences in the ejecta structure, opacity or nuclear heating rate cannot be ruled out as alternatives. The emission thereafter is dominated by a lanthanide-rich viscous wind. We find the mass ratio of the binary is $q=0.92pm0.07$ (90% credible interval). We place tight constraints on the maximum stable NS mass, $M_{rm TOV}=2.17^{+0.08}_{-0.11}$ M$_odot$. For a uniform prior in tidal deformability, the radius of a 1.4 M$_odot$ NS is $R_{1.4}sim 10.7$ km. Re-weighting with a prior based on equations of state that support our credible range in $M_{rm TOV}$, we derive a final measurement $R_{1.4}=11.06^{+1.01}_{-0.98}$ km. Applying our code to the second gravitationally-detected neutron star merger, GW190425, we estimate that an associated kilonova would have been fainter (by $sim0.7$ mag at one day post-merger) and declined faster than GW170817, underlining the importance of tuning follow-up strategies individually for each GW-detected NS merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا