ﻻ يوجد ملخص باللغة العربية
If a localized quantum state in a tight-binding model with structural aperiodicity is subject to noisy evolution, then it is generally expected to result in diffusion and delocalization. In this work, it is shown that the localized phase of the kicked Aubry-Andre-Harper (AAH) model is robust to the effects of noisy evolution, for long times, provided that some kick is delivered once every time period. However, if strong noisy perturbations are applied by randomly missing kicks, a sharp dynamical transition from a ballistic growth phase at initial times to a diffusive growth phase for longer times is observed. Such sharp transitions are seen even in translationally invariant models. These transitions are related to the existence of flat bands, and using a 2-band model we obtain analytical support for these observations. The diffusive evolution at long times has a mechanism similar to that of a random walk. The time scale at which the sharp transition takes place is related to the characteristics of noise. Remarkably, the wavepacket evolution scales with the noise parameters. Further, using kick sequence modulated by a coin toss, it is argued that the correlations in the noise are crucial to the observed sharp transitions.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c
In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations,