ﻻ يوجد ملخص باللغة العربية
In this paper, we show that there are solutions of every degree $r$ of the equation of Pell-Abel on some real hyperelliptic curve of genus $g$ if and only if $ r > g$. This result, which is known to the experts, has consequences, which seem to be unknown to the experts. First, we deduce the existence of a primitive $k$-differential on an hyperelliptic curve of genus $g$ with a unique zero of order $k(2g-2)$ for every $(k,g) eq(2,2)$. Moreover, we show that there exists a non Weierstrass point of order $n$ modulo a Weierstrass point on a hyperelliptic curve of genus $g$ if and only if $n > 2g$.
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par
This text is based on a talk by the first named author at the first congress of the SMF (Tours, 2016). We present Blochs conductor formula, which is a conjectural formula describing the change of topology in a family of algebraic varieties when the p
Let X be a complex analytic manifold and D subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {c
Nous montrons que les equations du rep`ere mobile des surfaces de Bonnet conduisent `a une paire de Lax matricielle isomonodromique dordre deux pour la sixi`eme equation de Painleve. We show that the moving frame equations of Bonnet surfaces can be
As an application of the theory of Lawson homology and morphic cohomology, Walker proved that the Abel-Jacobi map factors through another regular homomorphism. In this note, we give a direct proof of the theorem.