ﻻ يوجد ملخص باللغة العربية
Predicting the merger timescale ($tau_{rm merge}$) of merging dark matter halos, based on their orbital parameters and the structural properties of their hosts, is a fundamental problem in gravitational dynamics that has important consequences for our understanding of cosmological structure formation and galaxy formation. Previous models predicting $tau_{rm merge}$ have shown varying degrees of success when compared to the results of cosmological $N$-body simulations. We build on this previous work and propose a new model for $tau_{rm merge}$ that draws on insights derived from these simulations. We find that published predictions can provide reasonable estimates for $tau_{rm merge}$ based on orbital properties at infall, but tend to underpredict $tau_{rm merge}$ inside the host virial radius ($R_{200}$) because tidal stripping is neglected, and overpredict it outside $R_{200}$ because the host mass is underestimated. Furthermore, we find that models that account for orbital angular momentum via the circular radius $R_{rm circ}$ underpredict (overpredict) $tau_{rm merge}$ for bound (unbound) systems. By fitting for the dependence of $tau_{rm merge}$ on various orbital and host halo properties,we derive an improved model for $tau_{rm merge}$ that can be applied to a merging halo at any point in its orbit. Finally, we discuss briefly the implications of our new model for $tau_{rm merge}$ for semi-analytical galaxy formation modelling.
Hierarchical models of structure formation predict that dark matter halo assembly histories are characterised by episodic mergers and interactions with other haloes. An accurate description of this process will provide insights into the dynamical evo
The Sersic law (SL) offers a versatile functional form for the structural characterization of galaxies near and far. Whereas applying it to galaxies with a genuine SL luminosity distribution yields a robust determination of the Sersic exponent eta an
Merging is potentially the dominate process in galaxy formation, yet there is still debate about its history over cosmic time. To address this we classify major mergers and measure galaxy merger rates up to z $sim$ 3 in all five CANDELS fields (UDS,
We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our n
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here we present a machine learning app