ﻻ يوجد ملخص باللغة العربية
The Sersic law (SL) offers a versatile functional form for the structural characterization of galaxies near and far. Whereas applying it to galaxies with a genuine SL luminosity distribution yields a robust determination of the Sersic exponent eta and effective surface brightness $mu_{rm eff}$, this is not necessarily the case for galaxies whose surface brightness profiles (SBPs) appreciably deviate from the SL (eg, early-type galaxies with a depleted core and nucleated dwarf ellipticals, or most late-type galaxies-LTGs). In this general case of imperfect SL profiles, the best-fitting solution may significantly depend on the radius (or surface brightness) interval fit and corrections for point spread function (PSF) convolution effects. Such uncertainties may then affect, in a non-easily predictable manner, automated structural studies of galaxies. We present a fitting concept (iFIT) that permits a robust determination of the equivalent SL model for the general case of galaxies with imperfect SL profiles. iFIT has been extensively tested on synthetic data with a Sersic index 0.3<${eta}$<4.2 and an effective radius 1<$rm{R}_{eff}$ (arcs)<20. Applied to non PSF-convolved data, iFIT can infer the Sersic exponent eta with an absolute error of <0.2 even for shallow SBPs. As for PSF-degraded data, iFIT can recover the input SL model parameters with a satisfactorily accuracy almost over the entire considered parameter space as long as FWHM(PSF)<$rm{R}_{eff}$. Tests indicate that iFIT shows little sensitivity on PSF corrections and the SBP limiting surface brightness, and that subtraction of the best-fitting SL model in two different bands yields a good match to the observed radial color profile. The publicly available iFIT offers an efficient tool for the non-supervised structural characterization of large galaxy samples, as those expected to become available with Euclid and LSST.
Predicting the merger timescale ($tau_{rm merge}$) of merging dark matter halos, based on their orbital parameters and the structural properties of their hosts, is a fundamental problem in gravitational dynamics that has important consequences for ou
We investigate the utility and robustness of a new statistic, $omega_{ell}left(r_{c}right)$, for analyzing Baryon Acoustic Oscillations (BAO). We apply $omega_{ell}left(r_{c}right)$, introduced in Xu et al. (2010), to mocks and data from the Sloan Di
Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) sto
We present the analytical framework for converting projected light distributions with a Sersic profile into three-dimensional light distributions for stellar systems of arbitrary triaxial shape. The main practical result is the definition of a simple
Ariel has been selected as the next ESA M4 science mission and it is expected to be launched in 2028. During its 4-year mission, Ariel will observe the atmospheres of a large and diversified population of transiting exoplanets. A key factor for the a