ﻻ يوجد ملخص باللغة العربية
Physical or geographic location proves to be an important feature in many data science models, because many diverse natural and social phenomenon have a spatial component. Spatial autocorrelation measures the extent to which locally adjacent observations of the same phenomenon are correlated. Although statistics like Morans $I$ and Gearys $C$ are widely used to measure spatial autocorrelation, they are slow: all popular methods run in $Omega(n^2)$ time, rendering them unusable for large data sets, or long time-courses with moderate numbers of points. We propose a new $S_A$ statistic based on the notion that the variance observed when merging pairs of nearby clusters should increase slowly for spatially autocorrelated variables. We give a linear-time algorithm to calculate $S_A$ for a variable with an input agglomeration order (available at https://github.com/aamgalan/spatial_autocorrelation). For a typical dataset of $n approx 63,000$ points, our $S_A$ autocorrelation measure can be computed in 1 second, versus 2 hours or more for Morans $I$ and Gearys $C$. Through simulation studies, we demonstrate that $S_A$ identifies spatial correlations in variables generated with spatially-dependent model half an order of magnitude earlier than either Morans $I$ or Gearys $C$. Finally, we prove several theoretical properties of $S_A$: namely that it behaves as a true correlation statistic, and is invariant under addition or multiplication by a constant.
Clusters form the basis of a number of research study designs including survey and experimental studies. Cluster-based designs can be less costly but also less efficient than individual-based designs due to correlation between individuals within the
Spatial generalized linear mixed models (SGLMMs) are popular and flexible models for non-Gaussian spatial data. They are useful for spatial interpolations as well as for fitting regression models that account for spatial dependence, and are commonly
Estimation of autocorrelations and spectral densities is of fundamental importance in many fields of science, from identifying pulsar signals in astronomy to measuring heart beats in medicine. In circumstances where one is interested in specific auto
Estimating the first-order intensity function in point pattern analysis is an important problem, and it has been approached so far from different perspectives: parametrically, semiparametrically or nonparametrically. Our approach is close to a semipa
Spatial statistics is an area of study devoted to the statistical analysis of data that have a spatial label associated with them. Geographers often refer to the location information associated with the attribute information, whose study defines a re