ﻻ يوجد ملخص باللغة العربية
Estimation of autocorrelations and spectral densities is of fundamental importance in many fields of science, from identifying pulsar signals in astronomy to measuring heart beats in medicine. In circumstances where one is interested in specific autocorrelation functions that do not fit into any simple families of models, such as auto-regressive moving average (ARMA), estimating model parameters is generally approached in one of two ways: by fitting the model autocorrelation function to a non-parameteric autocorrelation estimate via regression analysis or by fitting the model autocorrelation function directly to the data via maximum likelihood. Prior literature suggests that variogram regression yields parameter estimates of comparable quality to maximum likelihood. In this letter we demonstrate that, as sample size is increases, the accuracy of the maximum-likelihood estimates (MLE) ultimately improves by orders of magnitude beyond that of variogram regression. For relatively continuous and Gaussian processes, this improvement can occur for sample sizes of less than 100. Moreover, even where the accuracy of these methods is comparable, the MLE remains almost universally better and, more critically, variogram regression does not provide reliable confidence intervals. Inaccurate regression parameter estimates are typically accompanied by underestimated standard errors, whereas likelihood provides reliable confidence intervals.
Physical or geographic location proves to be an important feature in many data science models, because many diverse natural and social phenomenon have a spatial component. Spatial autocorrelation measures the extent to which locally adjacent observat
A robust estimator is proposed for the parameters that characterize the linear regression problem. It is based on the notion of shrinkages, often used in Finance and previously studied for outlier detection in multivariate data. A thorough simulation
Bootstrap smoothed (bagged) estimators have been proposed as an improvement on estimators found after preliminary data-based model selection. Efron, 2014, derived a widely applicable formula for a delta method approximation to the standard deviation
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data-based model selection. The key result of Efron (2014) is a very convenient and widely applicable formula for a delta meth
The problem of Voodoo correlations is recognized in neuroimaging as the problem of estimating quantities of interest from the same data that was used to select them as interesting. In statistical terminology, the problem of inference following select