ﻻ يوجد ملخص باللغة العربية
We study a model for the entanglement of a two-dimensional reflecting Brownian motion in a bounded region divided into two halves by a wall with three or more small windows. We map the Brownian motion into a Markov Chain on the fundamental groupoid of the region. We quantify entanglement of the path with the length of the appropriate element in this groupoid. Our main results are a law of large numbers and a central limit theorem for this quantity. The constants appearing in the limit theorems are expressed in terms of a coupled system of quadratic equations.
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to g
Consider an infinite tree with random degrees, i.i.d. over the sites, with a prescribed probability distribution with generating function G(s). We consider the following variation of Renyis parking problem, alternatively called blocking RSA: at every
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
In this paper we will study a stiff problem in two-dimensional space and especially its probabilistic counterpart. Roughly speaking, the heat equation with a parameter $varepsilon>0$ is under consideration: [ partial_t u^varepsilon(t,x)=frac{1}{2} ab
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w