ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Mechanics of Gravitational Waves

265   0   0.0 ( 0 )
 نشر من قبل George Zahariade
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newtons law or Einsteins equations. Here we treat the gravitational field as a quantum field and determine the implications of such treatment for experimental observables. We find that falling bodies in gravity are subject to random fluctuations (noise) whose characteristics depend on the quantum state of the gravitational field. We derive a stochastic equation for the separation of two falling particles. Detection of this fundamental noise, which may be measurable at gravitational wave detectors, would vindicate the quantization of gravity, and reveal important properties of its sources.



قيم البحث

اقرأ أيضاً

We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle t rapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM.
127 - T. Banks 2020
We investigate modifications of quantum mechanics (QM) that replace the unitary group in a finite dimensional Hilbert space with a finite group and determine the minimal sequence of subgroups necessary to approximate QM arbitrarily closely for genera l choices of Hamiltonian. This mathematical study reveals novel insights about t Hoofts Ontological Quantum Mechanics, and the derivation of statistical mechanics from quantum mechanics. We show that Kornyaks proposal to understand QM as classical dynamics on a Hilbert space of one dimension higher than that describing the universe, supplemented by a choice of the value of a naturally conserved quantum operator in that classical evolution can probably be a model of the world we observe.
In this paper we introduce a new approach to the study of the effects that an impulsive wave, containing a mixture of material sources and gravitational waves, has on a geodesic congruence that traverses it. We find that the effect of the wave on the congruence is a discontinuity in the B-tensor of the congruence. Our results thus provide a detector independent and covariant characterization of gravitational memory.
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as poin ts on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems-just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
We investigate the asymptotic dynamics of topological anti-de Sitter supergravity in two dimensions. Starting from the formulation as a BF theory, it is shown that the AdS_2 boundary conditions imply that the asymptotic symmetries form a super-Viraso ro algebra. Using the central charge of this algebra in Cardys formula, we exactly reproduce the thermodynamical entropy of AdS_2 black holes. Furthermore, we show that the dynamics of the dilaton and its superpartner reduces to that of superconformal transformations that leave invariant one chiral component of the stress tensor supercurrent of a two-dimensional conformal field theory. This dynamics is governed by a supersymmetric extension of the de Alfaro-Fubini-Furlan model of conformal quantum mechanics. Finally, two-dimensional de Sitter gravity is also considered, and the dS_2 entropy is computed by counting CFT states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا