ﻻ يوجد ملخص باللغة العربية
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems-just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
We investigate modifications of quantum mechanics (QM) that replace the unitary group in a finite dimensional Hilbert space with a finite group and determine the minimal sequence of subgroups necessary to approximate QM arbitrarily closely for genera
For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newtons law or Einsteins equatio
We investigate the asymptotic dynamics of topological anti-de Sitter supergravity in two dimensions. Starting from the formulation as a BF theory, it is shown that the AdS_2 boundary conditions imply that the asymptotic symmetries form a super-Viraso
It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle t