ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Natural Bilingual and Code-Switched Speech Synthesis Based on Mix of Monolingual Recordings and Cross-Lingual Voice Conversion

115   0   0.0 ( 0 )
 نشر من قبل Shengkui Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a challenge. The main reason is that it is not easy to obtain a bilingual corpus from a speaker who achieves native-level fluency in both languages. In this paper, we explore the use of Mandarin speech recordings from a Mandarin speaker, and English speech recordings from another English speaker to build high-quality bilingual and code-switched TTS for both speakers. A Tacotron2-based cross-lingual voice conversion system is employed to generate the Mandarin speakers English speech and the English speakers Mandarin speech, which show good naturalness and speaker similarity. The obtained bilingual data are then augmented with code-switched utterances synthesized using a Transformer model. With these data, three neural TTS models -- Tacotron2, Transformer and FastSpeech are applied for building bilingual and code-switched TTS. Subjective evaluation results show that all the three systems can produce (near-)native-level speech in both languages for each of the speaker.



قيم البحث

اقرأ أيضاً

Cross-lingual voice conversion (VC) is an important and challenging problem due to significant mismatches of the phonetic set and the speech prosody of different languages. In this paper, we build upon the neural text-to-speech (TTS) model, i.e., Fas tSpeech, and LPCNet neural vocoder to design a new cross-lingual VC framework named FastSpeech-VC. We address the mismatches of the phonetic set and the speech prosody by applying Phonetic PosteriorGrams (PPGs), which have been proved to bridge across speaker and language boundaries. Moreover, we add normalized logarithm-scale fundamental frequency (Log-F0) to further compensate for the prosodic mismatches and significantly improve naturalness. Our experiments on English and Mandarin languages demonstrate that with only mono-lingual corpus, the proposed FastSpeech-VC can achieve high quality converted speech with mean opinion score (MOS) close to the professional records while maintaining good speaker similarity. Compared to the baselines using Tacotron2 and Transformer TTS models, the FastSpeech-VC can achieve controllable converted speech rate and much faster inference speed. More importantly, the FastSpeech-VC can easily be adapted to a speaker with limited training utterances.
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper present s results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
Voice disorders affect a large portion of the population, especially heavy voice users such as teachers or call-center workers. Most voice disorders can be treated effectively with behavioral voice therapy, which teaches patients to replace problemat ic, habituated voice production mechanics with optimal voice production technique(s), yielding improved voice quality. However, treatment often fails because patients have difficulty differentiating their habitual voice from the target technique independently, when clinician feedback is unavailable between therapy sessions. Therefore, with the long term aim to extend clinician feedback to extra-clinical settings, we built two systems that automatically differentiate various voice qualities produced by the same individual. We hypothesized that 1) a system based on i-vectors could classify these qualities as if they represent different speakers and 2) such a system would outperform one based on traditional voice signal processing algorithms. Training recordings were provided by thirteen amateur actors, each producing 5 perceptually different voice qualities in connected speech: normal, breathy, fry, twang, and hyponasal. As hypothesized, the i-vector system outperformed the acoustic measure system in classification accuracy (i.e. 97.5% compared to 77.2%, respectively). Findings are expected because the i-vector system maps features to an integrated space which better represents each voice quality than the 22-feature space of the baseline system. Therefore, an i-vector based system has potential for clinical application in voice therapy and voice training.
The voice conversion challenge is a bi-annual scientific event held to compare and understand different voice conversion (VC) systems built on a common dataset. In 2020, we organized the third edition of the challenge and constructed and distributed a new database for two tasks, intra-lingual semi-parallel and cross-lingual VC. After a two-month challenge period, we received 33 submissions, including 3 baselines built on the database. From the results of crowd-sourced listening tests, we observed that VC methods have progressed rapidly thanks to advanced deep learning methods. In particular, speaker similarity scores of several systems turned out to be as high as target speakers in the intra-lingual semi-parallel VC task. However, we confirmed that none of them have achieved human-level naturalness yet for the same task. The cross-lingual conversion task is, as expected, a more difficult task, and the overall naturalness and similarity scores were lower than those for the intra-lingual conversion task. However, we observed encouraging results, and the MOS scores of the best systems were higher than 4.0. We also show a few additional analysis results to aid in understanding cross-lingual VC better.
In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speakers voice characteristics. This approach alleviates the evaluati on problem one normally has when converting typical speech to pathological speech, as in our approach, the voice conversion (VC) model does not need to be optimised for speech degradation but only for the speaker change. This change in the optimisation ensures that any degradation found in naturalness is due to the conversion process and not due to the model exaggerating characteristics of a speech pathology. To show a proof of concept of this method, we convert dysarthric speech using the UASpeech database and an autoencoder-based VC technique. Subjective evaluation results show reasonable naturalness for high intelligibility dysarthric speakers, though lower intelligibility seems to introduce a marginal degradation in naturalness scores for mid and low intelligibility speakers compared to ground truth. Conversion of speaker characteristics for low and high intelligibility speakers is successful, but not for mid. Whether the differences in the results for the different intelligibility levels is due to the intelligibility levels or due to the speakers needs to be further investigated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا