ترغب بنشر مسار تعليمي؟ اضغط هنا

Pathological voice adaptation with autoencoder-based voice conversion

157   0   0.0 ( 0 )
 نشر من قبل Bence Halpern
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speakers voice characteristics. This approach alleviates the evaluation problem one normally has when converting typical speech to pathological speech, as in our approach, the voice conversion (VC) model does not need to be optimised for speech degradation but only for the speaker change. This change in the optimisation ensures that any degradation found in naturalness is due to the conversion process and not due to the model exaggerating characteristics of a speech pathology. To show a proof of concept of this method, we convert dysarthric speech using the UASpeech database and an autoencoder-based VC technique. Subjective evaluation results show reasonable naturalness for high intelligibility dysarthric speakers, though lower intelligibility seems to introduce a marginal degradation in naturalness scores for mid and low intelligibility speakers compared to ground truth. Conversion of speaker characteristics for low and high intelligibility speakers is successful, but not for mid. Whether the differences in the results for the different intelligibility levels is due to the intelligibility levels or due to the speakers needs to be further investigated.



قيم البحث

اقرأ أيضاً

In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; t hese are then used as input by a text-to-speech (TTS) system to generate the converted speech. Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity. Although some researchers have considered transferring prosodic clues from the source speech, there arises a speaker mismatch during training and conversion. To address this issue, in this work, we propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP). We evaluate both methods on the VCC2020 benchmark and consider different linguistic representations. The results demonstrate the effectiveness of TTP in both objective and subjective evaluations.
This paper proposes a novel voice conversion (VC) method based on non-autoregressive sequence-to-sequence (NAR-S2S) models. Inspired by the great success of NAR-S2S models such as FastSpeech in text-to-speech (TTS), we extend the FastSpeech2 model fo r the VC problem. We introduce the convolution-augmented Transformer (Conformer) instead of the Transformer, making it possible to capture both local and global context information from the input sequence. Furthermore, we extend variance predictors to variance converters to explicitly convert the source speakers prosody components such as pitch and energy into the target speaker. The experimental evaluation with the Japanese speaker dataset, which consists of male and female speakers of 1,000 utterances, demonstrates that the proposed model enables us to perform more stable, faster, and better conversion than autoregressive S2S (AR-S2S) models such as Tacotron2 and Transformer.
This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet vocoders are trained with natural acoustic features but conditioned on the converted features in the conversion stage for VC, and such a mismatch often causes significant quality and similarity degradation. In this work, we take advantage of the particular structure of VAEs to refine WaveNet vocoders with the self-reconstructed features generated by VAE, which are of similar characteristics with the converted features while having the same temporal structure with the target natural features. We analyze these features and show that the self-reconstructed features are similar to the converted features. Objective and subjective experimental results demonstrate the effectiveness of our proposed framework.
This paper presents a low-latency real-time (LLRT) non-parallel voice conversion (VC) framework based on cyclic variational autoencoder (CycleVAE) and multiband WaveRNN with data-driven linear prediction (MWDLP). CycleVAE is a robust non-parallel mul tispeaker spectral model, which utilizes a speaker-independent latent space and a speaker-dependent code to generate reconstructed/converted spectral features given the spectral features of an input speaker. On the other hand, MWDLP is an efficient and a high-quality neural vocoder that can handle multispeaker data and generate speech waveform for LLRT applications with CPU. To accommodate LLRT constraint with CPU, we propose a novel CycleVAE framework that utilizes mel-spectrogram as spectral features and is built with a sparse network architecture. Further, to improve the modeling performance, we also propose a novel fine-tuning procedure that refines the frame-rate CycleVAE network by utilizing the waveform loss from the MWDLP network. The experimental results demonstrate that the proposed framework achieves high-performance VC, while allowing for LLRT usage with a single-core of $2.1$--$2.7$ GHz CPU on a real-time factor of $0.87$--$0.95$, including input/output, feature extraction, on a frame shift of $10$ ms, a window length of $27.5$ ms, and $2$ lookup frames.
Voice conversion (VC) is an effective approach to electrolaryngeal (EL) speech enhancement, a task that aims to improve the quality of the artificial voice from an electrolarynx device. In frame-based VC methods, time alignment needs to be performed prior to model training, and the dynamic time warping (DTW) algorithm is widely adopted to compute the best time alignment between each utterance pair. The validity is based on the assumption that the same phonemes of the speakers have similar features and can be mapped by measuring a pre-defined distance between speech frames of the source and the target. However, the special characteristics of the EL speech can break the assumption, resulting in a sub-optimal DTW alignment. In this work, we propose to use lip images for time alignment, as we assume that the lip movements of laryngectomee remain normal compared to healthy people. We investigate two naive lip representations and distance metrics, and experimental results demonstrate that the proposed method can significantly outperform the audio-only alignment in terms of objective and subjective evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا