ﻻ يوجد ملخص باللغة العربية
This paper provides several optimizations of the rank-based approach for complementing B{u}chi automata. We start with Schewes theoretically optimal construction and develop a set of techniques for pruning its state space that are key to obtaining small complement automata in practice. In particular, the reductions (except one) have the property that they preserve (at least some) so-called super-tight runs, which are runs whose ranking is as tight as possible. Our evaluation on a large benchmark shows that the optimizations indeed significantly help the rank-based approach and that, in a large number of cases, the obtained complement is the smallest from those produced by a large number of state-of-the-art tools for B{u}chi complementation.
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o
In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $bigwedge_{i=1}^n mathbf{G}mathbf{F} varphi_i vee mathb
We propose a new global SPACING constraint that is useful in modeling events that are distributed over time, like learning units scheduled over a study program or repeated patterns in music compositions. First, we investigate theoretical properties o
We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w