ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Synthesis for One-Counter Automata

70   0   0.0 ( 0 )
 نشر من قبل Ritam Raha
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called AERPADPLUS, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of AERPADPLUS, (ii) we prove that the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter.



قيم البحث

اقرأ أيضاً

We study complexity of the model-checking problems for LTL with registers (also known as freeze LTL) and for first-order logic with data equality tests over one-counter automata. We consider several classes of one-counter automata (mainly determinist ic vs. nondeterministic) and several logical fragments (restriction on the number of registers or variables and on the use of propositional variables for control locations). The logics have the ability to store a counter value and to test it later against the current counter value. We show that model checking over deterministic one-counter automata is PSPACE-complete with infinite and finite accepting runs. By constrast, we prove that model checking freeze LTL in which the until operator is restricted to the eventually operator over nondeterministic one-counter automata is undecidable even if only one register is used and with no propositional variable. As a corollary of our proof, this also holds for first-order logic with data equality tests restricted to two variables. This makes a difference with the facts that several verification problems for one-counter automata are known to be decidable with relatively low complexity, and that finitary satisfiability for the two logics are decidable. Our results pave the way for model-checking memoryful (linear-time) logics over other classes of operational models, such as reversal-bounded counter machines.
This paper is about reachability analysis in a restricted subclass of multi-pushdown automata. We assume that the control states of an automaton are partially ordered, and all transitions of an automaton go downwards with respect to the order. We pro ve decidability of the reachability problem, and computability of the backward reachability set. As the main contribution, we identify relevant subclasses where the reachability problem becomes NP-complete. This matches the complexity of the same problem for communication-free vector addition systems, a special case of stateless multi-pushdown automata.
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o f the challenges is the size of the DPA, which often grows very fast in practice, and can reach double exponential size in the length of the LTL formula. In this paper we describe a single exponential translation from limit-deterministic Buchi automata (LDBA) to DPA, and show that it can be concatenated with a recent efficient translation from LTL to LDBA to yield a double exponential, enquote{Safraless} LTL-to-DPA construction. We also report on an implementation, a comparison with the SPOT library, and performance on several sets of formulas, including instances from the 2016 SyntComp competition.
This paper offers a survey of uppaalsmc, a major extension of the real-time verification tool uppaal. uppaalsmc allows for the efficient analysis of performance properties of networks of priced timed automata under a natural stochastic semantics. In particular, uppaalsmc relies on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. uppaalsmc comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool - including modeling and specification formalisms as well as techniques applied - together with applications of the tool to case studies.
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w eighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا