ﻻ يوجد ملخص باللغة العربية
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time accelerating expansion of the universe without introducing any textit{ad hoc} screening mechanism to preserve the dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of the black holes and their QNMs, we take into account the constraints on the model parameters based on the post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered in the observationally consistent range of parameter space.
We consider static and cylindrically symmetric interior string type solutions in the scalar-tensor representation of the hybrid metric-Palatini modified theory of gravity. As a first step in our study, we obtain the gravitational field equations and
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (li
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the
In this work, we have calculated the polar gravitational quasinormal modes for a quantum corrected black hole model, that arises in the context of Loop Quantum Gravity, known as Self-Dual Black Hole. In this way, we have calculated the characteristic