ﻻ يوجد ملخص باللغة العربية
We present observations of the four hyperfine structure components of the OH 18 cm transition (1612, 1665, 1667 and 1720 MHz) toward a filamentary dark cloud, the Pipe nebula, with the Green Bank Telescope. A statistical equilibrium analysis is applied to the spectra,and the kinetic temperature of a diffuse molecular gas surrounding dense cores is determined accurately; the derived temperature ranges from 40 K to 75 K. From this result, we assess the heating effect on the filamentarystructure of the nebulas stem region due to UV photons from a nearby star $theta$-Ophiuchi and a possible filament-filament collision in the interface of the stem and bowl regions. In the stem region, the gas kinetic temperature is found to be almost independent of the apparent distance from $theta$-Ophiuchi: the UV-heating effect by the star is not visible. On the other hand, the gas kinetic temperature is raised, as high as $sim$75 K, at the interface of the two filamentary structures. This result provides us with an additional support to the filament-filament collision scenario in the Pipe nebula.
Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). We test how well the picture applies
We present the results of an extensive Arecibo observational survey of magnetic field strengths in the inter-core regions of molecular clouds to determine their role in the evolution and collapse of molecular clouds as a whole. Sensitive 18 cm OH Zee
The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be th
We present excitation temperatures $T_{ex}$ for the OH 18-cm main lines at 1665 and 1667 MHz measured directly in front of the W5 star-forming region, using observations from the Green Bank Telescope and the Very Large Array. We find unequivocally th
We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at z = 0.19612 in the untargeted Apertif Wide-area Extragalactic Survey (AWES), and the subsequent measurement of the OH 1612 M