ترغب بنشر مسار تعليمي؟ اضغط هنا

The first frost in the Pipe Nebula

122   0   0.0 ( 0 )
 نشر من قبل Miwa Goto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Miwa Goto




اسأل ChatGPT حول البحث

Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. The water ice absorption is positively detected at 3.0 micron in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same visual extinction. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 micron as well. The fractional abundance of CO ice with respect to water ice is 16+7-6 %, and about half as much as the values typically seen in low-mass star-forming regions. A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation.



قيم البحث

اقرأ أيضاً

115 - Pau Frau 2010
The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be th readed by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.
103 - P. Frau 2012
The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star-formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young s tarless cores. The cloud is, therefore, a good laboratory to study the earliest stages of the star-formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30-m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived a Av to NH2 factor of (1.27$pm$0.12)$times10^{-21}$ mag cm$^{2}$ and a background visual extinction of ~6.7 mag possibly arising from the cloud material. We derived an average core diameter of ~0.08 pc, density of ~10$^5$ cm$^{-3}$, and mass of ~1.7 Msun. Several trends seem to exist related to increasing core density: (i) diameter seems to shrink, (ii) mass seems to increase, and (iii) chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large scale magnetic fields seem to play a secondary role in shaping the cores. The full abstract is available in the pdf.
We present observations of the four hyperfine structure components of the OH 18 cm transition (1612, 1665, 1667 and 1720 MHz) toward a filamentary dark cloud, the Pipe nebula, with the Green Bank Telescope. A statistical equilibrium analysis is appli ed to the spectra,and the kinetic temperature of a diffuse molecular gas surrounding dense cores is determined accurately; the derived temperature ranges from 40 K to 75 K. From this result, we assess the heating effect on the filamentarystructure of the nebulas stem region due to UV photons from a nearby star $theta$-Ophiuchi and a possible filament-filament collision in the interface of the stem and bowl regions. In the stem region, the gas kinetic temperature is found to be almost independent of the apparent distance from $theta$-Ophiuchi: the UV-heating effect by the star is not visible. On the other hand, the gas kinetic temperature is raised, as high as $sim$75 K, at the interface of the two filamentary structures. This result provides us with an additional support to the filament-filament collision scenario in the Pipe nebula.
The detailed magnetic field structure of the starless dense core CB81 (L1774, Pipe 42) in the Pipe Nebula was determined based on near-infrared polarimetric observations of background stars to measure dichroically polarized light produced by magnetic ally aligned dust grains in the core. The magnetic fields pervading CB81 were mapped using 147 stars and axisymmetrically distorted hourglass-like fields were identified. On the basis of simple 2D and 3D magnetic field modeling, the magnetic inclination angles in the plane-of-sky and line-of-sight directions were determined to be $4^{circ} pm 8^{circ}$ and $20^{circ} pm 20^{circ}$, respectively. The total magnetic field strength of CB81 was found to be $7.2 pm 2.3$ $mu{rm G}$. Taking into account the effects of thermal/turbulent pressure and magnetic fields, the critical mass of CB81 was calculated to be $M_{rm cr}=4.03 pm 0.40$ M$_{odot}$, which is close to the observed core mass of $M_{rm core}=3.37 pm 0.51$ M$_{odot}$. We thus conclude that CB81 is in a condition close to the critical state. In addition, a spatial offset of $92$ was found between the center of magnetic field geometry and the dust extinction distribution; this offset structure could not have been produced by self-gravity. The data also indicate a linear relationship between polarization and extinction up to $A_V sim 30$ mag going toward the core center. This result confirms that near-infrared polarization can accurately trace the overall magnetic field structure of the core.
267 - P. Frau 2011
We used the new IRAM 30-m FTS backend to perform an unbiased ~15 GHz wide survey at 3 mm toward the Pipe Nebula young diffuse starless cores. We found an unexpectedly rich chemistry. We propose a new observational classification based on the 3 mm mol ecular line emission normalized by the core visual extinction (Av). Based on this classification, we report a clear differentiation in terms of chemical composition and of line emission properties, which served to define three molecular core groups. The diffuse cores, Av<~15, show poor chemistry with mainly simple species (e.g. CS and CCH). The oxo-sulfurated cores, Av~15--22, appear to be abundant in species like SO and SO2, but also in HCO, which seem to disappear at higher densities. Finally, the deuterated cores, Av>~22, show typical evolved chemistry prior to the onset of the star formation process, with nitrogenated and deuterated species, as well as carbon chain molecules. Based on these categories, one of the diffuse cores (Core 47) has the spectral line properties of the oxo-sulfurated ones, which suggests that it is a possible failed core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا