ﻻ يوجد ملخص باللغة العربية
We study the superconductivity in typical $d$-band elemental superconductors V and Nb with the recently developed non-empirical computational scheme based on the density functional theory for superconductors. The effect of ferromagnetic fluctuation (paramagnon) on the superconducting transition temperature ($T_{rm c}$), which in principle suppress the $s$-wave superconducting pairing, is quantified without any empirical parameter. We show that the strong paramagnon effect cancels the $T_{rm c}$-enhancing effects of the phonon-mediated pairing and dynamical screened Coulomb interaction.
A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO
The recent reports on 203 K superconductivity in compressed hydrogen sulfide, H$_3$S, has attracted great interest in sulfur-hydrogen system under high pressure. Here, we investigated the superconductivity of P-doped and Cl-doped H$_3$S using the fir
The structural, electronic, magnetic, and vibrational properties of LaFeSiH$_x$ for $x$ between 0 and 1 are investigated using density functional calculations. We find that the electronic and magnetic properties are strongly controlled by the hydroge
We present an advanced method to study spin fluctuations in superconductors quantitatively, and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ
We present the derivation of an ab-initio and parameter free effective electron-electron interaction that goes beyond the screened RPA and accounts for superconducting pairing driven by spin-fluctuations. The construction is based on many body pertur