ﻻ يوجد ملخص باللغة العربية
The structural, electronic, magnetic, and vibrational properties of LaFeSiH$_x$ for $x$ between 0 and 1 are investigated using density functional calculations. We find that the electronic and magnetic properties are strongly controlled by the hydrogen concentration $x$ in LaFeSiH$_x$. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiH$_x$ for $xleq0.75$ is not magnetic within the virtual crystal approximation or with explicit doping of supercells. The antiferromagnetic configuration breaks the symmetry of Fe $d$ orbitals and increases electron-phonon coupling up to $50%$, especially for modes in the 20-50 meV range that are associated with Fe atomic movement. We find competing nearest and next-nearest neighbor exchange interactions and significant spin-phonon coupling, qualitatively similar but smaller in magnitude compared those found in LaOFeAs superconductors. The superconducting $T_c$ for antiferromagnetic LaFeSiH$_x$, assuming conventional superconductivity via McMillans equation, therefore is computed to be 2-10 K, in contrast to $T_capprox0$ for the nonmagnetic material. We also predict that the LaFeSiH$_x$ could be a good proton conductor due to phase stability with a wide range of hydrogen concentration $x < 1$.
A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO
Within the framework of density functional theory we investigate the nature of magnetism in various families of Fe-based superconductors. (i) We show that magnetization of stripe-type antiferromagnetic order always becomes stronger when As is substit
We study the superconductivity in typical $d$-band elemental superconductors V and Nb with the recently developed non-empirical computational scheme based on the density functional theory for superconductors. The effect of ferromagnetic fluctuation (
The recent reports on 203 K superconductivity in compressed hydrogen sulfide, H$_3$S, has attracted great interest in sulfur-hydrogen system under high pressure. Here, we investigated the superconductivity of P-doped and Cl-doped H$_3$S using the fir
We report an inelastic x-ray scattering investigation of phonons in FeSe superconductor. Comparing the experimental phonon dispersion with density functional theory (DFT) calculations in the non-magnetic state, we found a significant disagreement bet