ﻻ يوجد ملخص باللغة العربية
The cosmic microwave background (CMB) spectrum provides tight constraints on the thermal history of the universe up to $z sim 2times 10^6$. At higher redshifts thermalization processes become very efficient so that even large energy releases do not leave visible imprints in the CMB spectrum. In this paper we show that the consistency between the accurate determinations of the specific entropy at primordial nucleosynthesis and at the electron-photon decoupling implies that no more than 7.8% of the present day CMB energy density could have been released in the post-nucleosynthesis era. As pointed out by previous studies, primordial nucleosynthesis complements model independent constraints provided by the CMB spectrum, extending them by two orders of magnitude in redshift.
As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit t
Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evidences for the big bang model, together with the expansion of the universe and the cosmic microwave background. There is a good global agreement over a range of nin
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic obser
This paper derives an upper limit on the density $rho_{scriptstyleLambda}$ of dark energy based on the requirement that cosmological structure forms before being frozen out by the eventual acceleration of the universe. By allowing for variations in b
We present constraints on the number of relativistic species from a joint analysis of cosmic microwave background (CMB) fluctuations and light element abundances (helium and deuterium) compared to big bang nucleosynthesis (BBN) predictions. Our BBN c