ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Primordial Black Holes From Big Bang Nucleosynthesis Revisited

82   0   0.0 ( 0 )
 نشر من قبل Dan Hooper
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit the constraints on primordial black holes derived from measurements of the light element abundances. Black holes and their Hawking evaporation products can impact the era of Big Bang Nucleosynthesis (BBN) by altering the rate of expansion at the time of neutron-proton freeze-out, as well as by radiating mesons which can convert protons into neutrons and vice versa. Such black holes can thus enhance the primordial neutron-to-proton ratio, and increase the amount of helium that is ultimately produced. Additionally, the products of Hawking evaporation can break up helium nuclei, which both reduces the helium abundance and increases the abundance of primordial deuterium. Building upon previous work, we make use of modern deuterium and helium measurements to derive stringent constraints on black holes which evaporate in $t_{rm evap} sim 10^{-1}$ s to $sim 10^{13}$ s (corresponding to $M sim 6times 10^8$ g to $sim 2 times 10^{13}$ g, assuming Standard Model particle content). We also consider how physics beyond the Standard Model could impact these constraints. Due to the gravitational nature of Hawking evaporation, the rate at which a black hole evaporates, and the types of particles that are produced through this process, depend on the complete particle spectrum. Within this context, we discuss scenarios which feature a large number of decoupled degrees-of-freedom (ie~large hidden sectors), as well as models of TeV-scale supersymmetry.



قيم البحث

اقرأ أيضاً

Bimetric gravity is a ghost-free and observationally viable extension of general relativity, exhibiting both a massless and a massive graviton. The observed abundances of light elements can be used to constrain the expansion history of the Universe a t the period of Big Bang nucleosynthesis. Applied to bimetric gravity, we readily obtain constraints on the theory parameters which are complementary to other observational probes. For example, the mixing angle between the two gravitons must satisfy $theta lesssim 18^circ$ in the graviton mass range $m_mathrm{FP} gtrsim 10^{-16} , mathrm{eV}/c^2$, representing a factor of two improvement compared with other cosmological probes.
We discuss the possibility of producing a significant fraction of dark matter in the form of primordial black holes in the context of the pre-big bang inflationary scenario. We take into account, to this purpose, the enhancement of curvature perturba tions possibly induced by a variation of the sound-speed parameter $c_s$ during the string phase of high-curvature inflation. After imposing all relevant observational constraints, we find that the considered class of models is compatible with the production of a large amount of primordial black holes in the mass range relevant to dark matter, provided the sound-speed parameter is confined in a rather narrow range of values, $0.003 < c_s < 0.01$.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
We consider Tsallis cosmology as an approach to thermodynamic gravity and derive the bound on the Tsallis parameter to be $beta<2$ by using the constraints derived from the formation of the primordial light elements, Helium, Deuterium and Litium, fro m the observational data from Big Bang Nucleosynthesis (BBN) which allows only a very tiny deviation from General Relativity (GR). Next we consider thermal dark matter (DM) freeze-out mechanism in Tsallis cosmological era and derive bounds on the Tsallis parameter from the observed DM relic abundance to be $1-beta < 10^{-5}$.
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param eterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا