ﻻ يوجد ملخص باللغة العربية
We present a novel modular approach to infer upper bounds on the expected runtime of probabilistic integer programs automatically. To this end, it computes bounds on the runtime of program parts and on the sizes of their variables in an alternating way. To evaluate its power, we implemented our approach in a new version of our open-source tool KoAT.
We study weakest precondition reasoning about the (co)variance of outcomes and the variance of run-times of probabilistic programs with conditioning. For outcomes, we show that approximating (co)variances is computationally more difficult than approx
Free-Choice Workflow Petri nets, also known as Workflow Graphs, are a popular model in Business Process Modeling. In this paper we introduce Timed Probabilistic Workflow Nets (TPWNs), and give them a Markov Decision Process (MDP) semantics. Since t
Building upon recent work on probabilistic programs, we formally define the notion of expected runtime for quantum programs. A representation of the expected runtimes of quantum programs is introduced with an interpretation as an observable in physic
The notion of program sensitivity (aka Lipschitz continuity) specifies that changes in the program input result in proportional changes to the program output. For probabilistic programs the notion is naturally extended to expected sensitivity. A prev
Let $K in R^d$ be a convex body, and assume that $L$ is a randomly rotated and shifted integer lattice. Let $K_L$ be the convex hull of the (random) points $K cap L$. The mean width $W(K_L)$ of $K_L$ is investigated. The asymptotic order of the mean