ﻻ يوجد ملخص باللغة العربية
We study weakest precondition reasoning about the (co)variance of outcomes and the variance of run-times of probabilistic programs with conditioning. For outcomes, we show that approximating (co)variances is computationally more difficult than approximating expected values. In particular, we prove that computing both lower and upper bounds for (co)variances is $Sigma^{0}_{2}$-complete. As a consequence, neither lower nor upper bounds are computably enumerable. We therefore present invariant-based techniques that do enable enumeration of both upper and lower bounds, once appropriate invariants are found. Finally, we extend this approach to reasoning about run-time variances.
We present a novel modular approach to infer upper bounds on the expected runtime of probabilistic integer programs automatically. To this end, it computes bounds on the runtime of program parts and on the sizes of their variables in an alternating w
This paper investigates the usage of generating functions (GFs) encoding measures over the program variables for reasoning about discrete probabilistic programs. To that end, we define a denotational GF-transformer semantics for probabilistic while-p
The correct by construction paradigm is an important component of modern Formal Methods, and here we use the probabilistic Guarded-Command Language $mathit{pGCL}$ to illustrate its application to $mathit{probabilistic}$ programming. $mathit{pGCL}$ ex
This paper presents a novel method for the automated synthesis of probabilistic programs. The starting point is a program sketch representing a finite family of finite-state Markov chains with related but distinct topologies, and a PCTL specification
Extending our own and others earlier approaches to reasoning about termination of probabilistic programs, we propose and prove a new rule for termination with probability one, also known as almost-certain termination. The rule uses both (non-strict)