ﻻ يوجد ملخص باللغة العربية
In this work we study thermodynamics of 2+1-dimensional static black holes with a nonlinear electric field. Besides employing the standard thermodynamic approach, we investigate the black hole thermodynamics by studying its thermodynamic geometry. We compute the Weinhold and Ruppeiner metrics and compare the thermodynamic geometry with the standard description on the black hole thermodynamics. We further consider the cosmological constant as an additional extensive thermodynamic variable. In the thermodynamic equilibrium three dimensional space, we compute the efficiency of the heat engine and show that it is possible to be built with this black hole.
We study the propagation of scalar fields in the background of $2+1$-dimensional Coulomb like AdS black holes, and we show that such propagation is stable under Dirichlet boundary conditions. Then, we solve the Klein-Gordon equation by using the pseu
We study the propagation of charged scalar fields in the background of $2+1$-dimensional Coulomb-like AdS black holes, and we show that such propagation is unstable under Dirichlet boundary conditions. However, all the unstable modes are superradiant
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the
We study topological black hole solutions of the simplest quadratic gravity action and we find that two classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordstrom solution, while the second is asymptotically de Sitter or
We show that there is an inconsistency in the class of solutions obtained in Phys. Rev. D {bf 95}, 084037 (2017). This inconsistency is due to the approximate relation between lagrangian density and its derivative for Non-Linear Electrodynamics. We p