ﻻ يوجد ملخص باللغة العربية
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black hols and find that both first and second order phase transitions can occur in the canonical ensemble, while for the grand canonical ensemble the Hawking-Page and second order phase transitions are allowed.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the sca
Using Maxwells equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in $P-v$ d
We study the propagation of scalar fields in the background of $2+1$-dimensional Coulomb like AdS black holes, and we show that such propagation is stable under Dirichlet boundary conditions. Then, we solve the Klein-Gordon equation by using the pseu
An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear $SU(2)$ field is regular everywhere and depends explicitly
Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with sc