ﻻ يوجد ملخص باللغة العربية
We study quantitative stability of the solutions to Markovian quadratic reflected BSDEs with bounded terminal data. By virtue of the BMO martingale and change of measure techniques, we obtain the estimate of the variation of the solutions in terms of the difference of the driven forward processes. In addition, we propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs, and obtain the explicit rate of convergence by applying the quantitative stability result.
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The
Motivated by an equilibrium problem, we establish the existence of a solution for a family of Markovian backward stochastic differential equations with quadratic nonlinearity and discontinuity in $Z$. Using unique continuation and backward uniqueness
In this paper, we give several new results on solvability of a quadratic BSDE whose generator depends also on the mean of both variables. First, we consider such a BSDE using John-Nirenbergs inequality for BMO martingales to estimate its contribution
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochas
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate