ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Switching of One-Dimensional Reflected BSDEs, and Associated Multi-Dimensional BSDEs with Oblique Reflection

191   0   0.0 ( 0 )
 نشر من قبل Wei Zhong
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.



قيم البحث

اقرأ أيضاً

138 - Ying Hu 2007
In this paper, we study a multi-dimensional backward stochastic differential equation (BSDE) with oblique reflection, which is a BSDE reflected on the boundary of a special unbounded convex domain along an oblique direction, and which arises naturall y in the study of optimal switching problem. The existence of the adapted solution is obtained by the penalization method, the monotone convergence, and the a priori estimations. The uniqueness is obtained by a verification method (the first component of any adapted solution is shown to be the vector value of a switching problem for BSDEs). As applications, we apply the above results to solve the optimal switching problem for stochastic differential equations of functional type, and we give also a probabilistic interpretation of the viscosity solution to a system of variational inequalities.
94 - Hanwu Li , Guomin Liu 2021
We consider the well-posedness problem of multi-dimensional reflected backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators. Two methods, i.e., the penalization method and the Picard iteration a rgument, are provided to prove the existence and uniqueness of solutions. We also study its connection with the obstacle problem of a system of fully nonlinear PDEs.
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[Psi(Y_{T})]ge m$, for some ( possibly random) non-decreasing map $Psi$ and some threshold $m$. We name them textit{BSDEs with weak terminal condition} and obtain a representation of the minimal time $t$-values $Y_{t}$ such that $(Y,Z)$ is a supersolution of the BSDE with weak terminal condition. It provides a non-Markovian BSDE formulation of the PDE characterization obtained for Markovian stochastic target problems under controlled loss in Bouchard, Elie and Touzi cite{BoElTo09}. We then study the main properties of this minimal value. In particular, we analyze its continuity and convexity with respect to the $m$-parameter appearing in the weak terminal condition, and show how it can be related to a dual optimal control problem in Meyer form. These last properties generalize to a non Markovian framework previous results on quantile hedging and hedging under loss constraints obtained in F{o}llmer and Leukert cite{FoLe99,FoLe00}, and in Bouchard, Elie and Touzi cite{BoElTo09}.
172 - Dong Cao , Shanjian Tang 2019
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e stimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the u niqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا