ﻻ يوجد ملخص باللغة العربية
Compared to traditional nonlinear optical crystals, like BaB$_2$O$_4$, KTiOPO$_4$ or LiNbO$_3$, semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials. This is also the case for Bragg-reflection waveguides (BRW) targeting parametric down-conversion (PDC) to the telecom C-band. The large nonlinear coefficient of the AlGaAs alloy and the strong confinement of the light enable extremely bright integrated photon pair sources. However, under certain circumstances, a significant amount of detrimental broadband photoluminescence has been observed in BRWs. We show that this is mainly a result of linear absorption near the core and subsequent radiative recombination of electron-hole pairs at deep impurity levels in the semiconductor. For PDC with BRWs, we conclude that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns. We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values. Such measures enable us to increase the average pump power and/or the repetition rate, which makes integrated photon pair sources with on-chip multi-gigahertz pair rates feasible.
Bragg-reflection waveguides (BRWs) fabricated from AlGaAs provide an interesting non-linear optical platform for photon-pair generation via parametric down-conversion (PDC). In contrast to many conventional PDC sources, BRWs are made of high refracti
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching
We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of
Bragg-reflection waveguides emitting broadband parametric down-conversion (PDC) have been proven to be well suited for the on-chip generation of polarization entanglement in a straightforward fashion [R. T. Horn et al., Sci. Rep. 3, 2314 (2013)]. Her
We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wave