ﻻ يوجد ملخص باللغة العربية
The advances of the Internet of Things (IoT) have had a fundamental impact and influence in sharping our rich living experiences. However, since IoT devices are usually resource-constrained, lightweight block ciphers have played a major role in serving as a building block for secure IoT protocols. In CHES 2015, SIMECK, a family of block ciphers, was designed for resource-constrained IoT devices. Since its publication, there have been many analyses on its security. In this paper, under the one bit-flip model, we propose a new efficient fault analysis attack on SIMECK ciphers. Compared to those previously reported attacks, our attack can recover the full master key by injecting faults into only a single round of all SIMECK family members. This property is crucial, as it is infeasible for an attacker to inject faults into different rounds of a SIMECK implementation on IoT devices in the real world. Specifically, our attack is characterized by exercising a deep analysis of differential trail between the correct and faulty immediate ciphertexts. Extensive simulation evaluations are conducted, and the results demonstrate the effectiveness and correctness of our proposed attack.
We describe generalized running key ciphers and apply them for analysis of two Shannons methods. In particular, we suggest some estimation of the cipher equivocation and the probability of correct deciphering without key.
Since their introduction over two decades ago, side-channel attacks have presented a serious security threat. While many ciphers implementations employ masking techniques to protect against such attacks, they often leak secret information due to unin
Ineffective Fault Analysis (SIFA) was introduced as a new approach to attack block ciphers at CHES 2018. Since then, they have been proven to be a powerful class of attacks, with an easy to achieve fault model. One of the main benefits of SIFA is to
we will present an estimation for the upper-bound of the amount of 16-bytes plaintexts for English texts, which indicates that the block ciphers with block length no more than 16-bytes will be subject to recover plaintext attacks in the occasions of plaintext -known or plaintext-chosen attacks.
Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as