ﻻ يوجد ملخص باللغة العربية
Ineffective Fault Analysis (SIFA) was introduced as a new approach to attack block ciphers at CHES 2018. Since then, they have been proven to be a powerful class of attacks, with an easy to achieve fault model. One of the main benefits of SIFA is to overcome detection-based and infection-based countermeasures. In this paper we explain how the principles of SIFA can be applied to GIMLI, an authenticated encryption cipher participating the NIST-LWC competition. We identified two possible rounds during the intialization phase of GIMLI to mount our attack. If we attack the first location we are able to recover 3 bits of the key uniquely and the parity of 8 key-bits organized in 3 sums using 180 ineffective faults per biased single intermediate bit. If we attack the second location we are able to recover 15 bits of the key uniquely and the parity of 22 key-bits organized in 7 sums using 340 ineffective faults per biased intermediate bit. Furthermore, we investigated the influence of the fault model on the rate of ineffective faults in GIMLI. Finally, we verify the efficiency of our attacks by means of simulation.
The advances of the Internet of Things (IoT) have had a fundamental impact and influence in sharping our rich living experiences. However, since IoT devices are usually resource-constrained, lightweight block ciphers have played a major role in servi
Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as
A novel approach to analyze statistically the network traffic raw data is proposed. The huge amount of raw data of actual network traffic from the Intrusion Detection System is analyzed to determine if a traffic is a normal or harmful one. Using the
Persistent Fault Attack (PFA) is a recently proposed Fault Attack (FA) method in CHES 2018. It is able to recover full AES secret key in the Single-Byte-Fault scenario. It is demonstrated that classical FA countermeasures, such as Dual Modular Redund
Attackers have developed ever more sophisticated and intelligent ways to hack information and communication technology systems. The extent of damage an individual hacker can carry out upon infiltrating a system is well understood. A potentially catas