ترغب بنشر مسار تعليمي؟ اضغط هنا

Outbursting Quasi-Hilda Asteroid P/2010 H2 (Vales)

114   0   0.0 ( 0 )
 نشر من قبل David Jewitt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-Hilda asteroid P/2010 H2 (Vales) underwent a spectacular photometric outburst by 7.5 magnitudes (factor of 1000) in 2010. Here, we present our optical observations of this event in the four month period from April 20 to August 10. The outburst, starting UT 2010 April 15.76, released dust particles of total cross-section 17,600 sq km (albedo 0.1 assumed) and mass 1.2e9 kg, this being about 1e-4 of the mass of the nucleus, taken as a sphere of radius 1.5 km and density 500 kg/m3. While the rising phase of the outburst was very steep (brightness doubling time of hours), subsequent fading occurred slowly (fading timescales increasing from weeks to months), as large, low velocity particles drifted away from the nucleus. A simple model of the fading lightcurve indicates that the ejected particles occupied a broad range of sizes, from microns to centimeters, and followed a differential power-law distribution with index 3.6+/-0.1 (similar to that in other comets). The fastest particles had speeds 210 m/s, indicating gas-drag acceleration of small grains well-coupled to the flow. Low energy processes known to drive mass loss in active asteroids, including rotational disruption, thermal and desiccation stress cracking, and electrostatic repulsion, cannot generate the high particles speeds measured in P/Vales, and are discounted. Impact origin is unlikely given the short dynamical lifetimes of the quasi-Hildas and the low collision probabilities of these objects. The specific energy of the ejecta is estimated at 220 J/kg. The outburst follows a series of encounters with Jupiter in the previous century, consistent with the delayed activation of buried supervolatiles (and/or the crystallization of sub-surface amorphous ice) by conducted heat following an inward displacement of the perihelion. A potential origin in the debris cloud produced by avalanche is also considered.



قيم البحث

اقرأ أيضاً

The peculiar object P/2010 A2 was discovered by the LINEAR near-Earth asteroid survey in January 2010 and given a cometary designation due to the presence of a trail of material, although there was no central condensation or coma. The appearance of t his object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of Main Belt Comets (MBCs). If confirmed, this new object would greatly expand the range in heliocentric distance over which MBCs are found. Here we present observations taken from the unique viewing geometry provided by ESAs Rosetta spacecraft, far from the Earth, that demonstrate that the trail is due to a single event rather than a period of cometary activity, in agreement with independent results from the Hubble Space Telescope (HST). The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around February 10, 2009.
Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (0.1 to 10 mm) particles at 0.2 to 2 m/s speeds, with estimated mass-loss rates of a few kg/s. The protracted nature of the mass loss (continuous over 150 day s) is compatible with a sublimation origin, meaning that this object is likely an ice-bearing main-belt comet. Equilibrium sublimation of exposed water ice covering as little as 0.1 sq. km can match the data. Observations a year after perihelion show the object in an inactive state from which we deduce a nucleus effective radius 450(+100/-60) m (albedo 0.06+/-0.02 assumed). The gravitational escape speed from a body of this size is just 0.3 m/s, comparable to the inferred ejection speed of the dust. Time-series photometry provides tentative evidence for rapid rotation (lightcurve period 1.4 hour) that may also play a role in the loss of mass and which, if real, is a likely consequence of spin-up by sublimation torques. P/2017 S5 shares both physical and orbital similarities with the split active asteroid pair P/2016 J1-A and J1-B, and all three objects are likely members of the 7 Myr old, collisionally produced, Theobalda family.
An inner main-belt asteroid, P/2010 A2, was discovered on January 6th, 2010. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, whilst showing a comet-like dus t tail. Although analysis of images taken by the Hubble Space Telescope and Rosetta spacecraft suggested that the dust tail resulted from a recent head-on collision between asteroids (Jewitt et al. 2010; Snodgrass et al. 2010), an alternative idea of ice sublimation was suggested based on the morphological fitting of ground-based images (Moreno et al. 2010). Here, we report a multiband observation of P/2010 A2 made on January 2010 with a 105 cm telescope at the Ishigakijima Astronomical Observatory. Three broadband filters, $g$, $R_c$, and $I_c$, were employed for the observation. The unique multiband data reveals that the reflectance spectrum of the P/2010 A2 dust tail resembles that of an Sq-type asteroid or that of ordinary chondrites rather than that of an S-type asteroid. Due to the large error of the measurement, the reflectance spectrum also resembles the spectra of C-type asteroids, even though C-type asteroids are uncommon in the Flora family. The reflectances relative to the $g$-band (470 nm) are 1.096$pm$0.046 at the $R_c$-band (650 nm) and 1.131$pm$0.061 at the $I_c$-band (800 nm). We hypothesize that the parent body of P/2010 A2 was originally S-type but was then shattered upon collision into scaterring fresh chondritic particles from the interior, thus forming the dust tail.
We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4m Gran Telescopio Canarias (GTC) from late April to early June 2016. The images are best interpreted as the result of a relatively short-duration event wit h onset about $mathop{350}_{-30}^{+10}$ days before perihelion (i.e., around 10th February, 2016), starting sharply and decreasing with a $mathop{24}_{-7}^{+10}$ days (Half-width at half-maximum, HWHM). The results of the modeling imply the emission of $sim$1.7$times$10$^7$ kg of dust, if composed of particles of 1 micrometer to 1 cm in radius, distributed following a power-law of index --3, and having a geometric albedo of 0.15. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From the limiting magnitude reachable with the instrumental setup, and assuming a geometric albedo of 0.15 for the parent body, an upper limit for the size of possible fragment debris of $sim$50 m in radius is derived.
The dust emission from active asteroids is likely driven by collisions, fast rotation, sublimation of embedded ice, and combinations of these. Characterising these processes leads to a better understanding of their respective influence on the evoluti on of the asteroid population. We study the role of fast rotation in the active asteroid 358P (P 2012/T1). We obtained two nights of deep imaging of 358P with SOAR/Goodman and VLT/FORS2. We derived the rotational light curve from time-resolved photometry and searched for large fragments and debris > 8 mm in a stacked, ultra-deep image. The nucleus has an absolute magnitude of m_R=19.68, corresponding to a diameter of 530 m for standard assumptions on the albedo and phase function of a C-type asteroid. We do not detect fragments or debris that would require fast rotation to reduce surface gravity to facilitate their escape. The 10-hour light curve does not show an unambiguous periodicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا