ﻻ يوجد ملخص باللغة العربية
Quasi-Hilda asteroid P/2010 H2 (Vales) underwent a spectacular photometric outburst by 7.5 magnitudes (factor of 1000) in 2010. Here, we present our optical observations of this event in the four month period from April 20 to August 10. The outburst, starting UT 2010 April 15.76, released dust particles of total cross-section 17,600 sq km (albedo 0.1 assumed) and mass 1.2e9 kg, this being about 1e-4 of the mass of the nucleus, taken as a sphere of radius 1.5 km and density 500 kg/m3. While the rising phase of the outburst was very steep (brightness doubling time of hours), subsequent fading occurred slowly (fading timescales increasing from weeks to months), as large, low velocity particles drifted away from the nucleus. A simple model of the fading lightcurve indicates that the ejected particles occupied a broad range of sizes, from microns to centimeters, and followed a differential power-law distribution with index 3.6+/-0.1 (similar to that in other comets). The fastest particles had speeds 210 m/s, indicating gas-drag acceleration of small grains well-coupled to the flow. Low energy processes known to drive mass loss in active asteroids, including rotational disruption, thermal and desiccation stress cracking, and electrostatic repulsion, cannot generate the high particles speeds measured in P/Vales, and are discounted. Impact origin is unlikely given the short dynamical lifetimes of the quasi-Hildas and the low collision probabilities of these objects. The specific energy of the ejecta is estimated at 220 J/kg. The outburst follows a series of encounters with Jupiter in the previous century, consistent with the delayed activation of buried supervolatiles (and/or the crystallization of sub-surface amorphous ice) by conducted heat following an inward displacement of the perihelion. A potential origin in the debris cloud produced by avalanche is also considered.
The peculiar object P/2010 A2 was discovered by the LINEAR near-Earth asteroid survey in January 2010 and given a cometary designation due to the presence of a trail of material, although there was no central condensation or coma. The appearance of t
Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (0.1 to 10 mm) particles at 0.2 to 2 m/s speeds, with estimated mass-loss rates of a few kg/s. The protracted nature of the mass loss (continuous over 150 day
An inner main-belt asteroid, P/2010 A2, was discovered on January 6th, 2010. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, whilst showing a comet-like dus
We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4m Gran Telescopio Canarias (GTC) from late April to early June 2016. The images are best interpreted as the result of a relatively short-duration event wit
The dust emission from active asteroids is likely driven by collisions, fast rotation, sublimation of embedded ice, and combinations of these. Characterising these processes leads to a better understanding of their respective influence on the evoluti