ﻻ يوجد ملخص باللغة العربية
The dust emission from active asteroids is likely driven by collisions, fast rotation, sublimation of embedded ice, and combinations of these. Characterising these processes leads to a better understanding of their respective influence on the evolution of the asteroid population. We study the role of fast rotation in the active asteroid 358P (P 2012/T1). We obtained two nights of deep imaging of 358P with SOAR/Goodman and VLT/FORS2. We derived the rotational light curve from time-resolved photometry and searched for large fragments and debris > 8 mm in a stacked, ultra-deep image. The nucleus has an absolute magnitude of m_R=19.68, corresponding to a diameter of 530 m for standard assumptions on the albedo and phase function of a C-type asteroid. We do not detect fragments or debris that would require fast rotation to reduce surface gravity to facilitate their escape. The 10-hour light curve does not show an unambiguous periodicity.
We present pre-perihelion infrared 8 to 31 micron spectrophotometric and imaging observations of comet C/2012 K1 (Pan-STARRS), a dynamically new Oort Cloud comet, conducted with NASAs Stratospheric Observatory for Infrared Astronomy (SOFIA) facility
We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m t
P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data a
Main-Belt Comet P/2012 T1 (PANSTARRS) has been imaged using the 10.4m Gran Telescopio Canarias (GTC) and the 4.2m William Herschel Telescope (WHT) at six epochs in the period from November 2012 to February 2013, with the aim of monitoring its dust en
Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (0.1 to 10 mm) particles at 0.2 to 2 m/s speeds, with estimated mass-loss rates of a few kg/s. The protracted nature of the mass loss (continuous over 150 day