ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Variable Radio Recombination Line Emission in W49A

73   0   0.0 ( 0 )
 نشر من قبل Christopher De Pree
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new Jansky Very Large Array (VLA) images of the central region of the W49A star-forming region at 3.6~cm and at 7~mm at resolutions of 0farcs15 (1650 au) and 0farcs04 (440 au), respectively. The 3.6~cm data reveal new morphological detail in the ultracompact ion{H}{2} region population, as well as several previously unknown and unresolved sources. In particular, source A shows elongated, edge-brightened, bipolar lobes, indicative of a collimated outflow, and source E is resolved into three spherical components. We also present VLA observations of radio recombination lines at 3.6~cm and 7~mm, and IRAM Northern Extended Millimeter Array (NOEMA) observations at 1.2~mm. Three of the smallest ultracompact ion{H}{2} regions (sources A, B2 and G2) all show broad kinematic linewidths, with $Delta$V$_{FWHM}gtrsim$40~km~s$^{-1}$. A multi-line analysis indicates that broad linewidths remain after correcting for pressure broadening effects, suggesting the presence of supersonic flows. Substantial changes in linewidth over the 21 year time baseline at both 3.6 cm and 7 mm are found for source G2. At 3.6 cm, the linewidth of G2 changed from 31.7$pm$1.8 km s$^{-1}$ to 55.6$pm$2.7 km s$^{-1}$, an increase of $+$23.9$pm$3.4 km s$^{-1}$. The G2 source was previously reported to have shown a 3.6~cm continuum flux density decrease of 40% between 1994 and 2015. This source sits near the center of a very young bipolar outflow whose variability may have produced these changes.



قيم البحث

اقرأ أيضاً

343 - James M. Moran , Qizhou Zhang , 2017
The Submillimeter Array (SMA) has been used to image the emission from radio recombination lines of hydrogen at subarcsecond angular resolution from the young high-mass star MWC349A in the H26$alpha$, H30$alpha$, and H31$alpha$ transitions at 353, 23 2, and 211 GHz, respectively. Emission was seen over a range of 80 kms-1 in velocity and 50~mas (corresponding to 60~AU for a distance of 1200 pc). The emission at each frequency has two distinct components, one from gas in a nearly edge-on annular disk structure in Keplerian motion, and another from gas lifted off the disk at distances of up to about 25~AU from the star. The slopes of the position-velocity (PV) curves for the disk emission show a monotonic progression of the emission radius with frequency with relative radii of $0.85pm0.04$, 1, and $1.02pm0.01$ for the H26$alpha$, H30$alpha$, and H31$alpha$ transitions, respectively. This trend is consistent with theoretical excitation models of maser emission from a region where the density decreases with radius and the lower transitions are preferentially excited at higher densities. The mass is difficult to estimate from the PV diagrams because the wind components dominate the emission at the disk edges. The mass estimate is constrained to be only in the range of 10--30 solar masses. The distribution of the wind emission among the transitions is surprisingly different, which reflects its sensitivity to excitation conditions. The wind probably extracts significant angular momentum from the system.
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observation s of the W51 IRS1 HII region were made with the Arecibo 305 m telescope. Of the full 1-10 GHz database, we have analyzed the observations between 4.5 and 5 GHz here. The steps involved in the analysis were: a) bandpass calibration using on-source/off-source observations; b) flux density calibration; c) removing spectral baselines due to errors in bandpass calibration and d) Gaussian fitting of the detected lines. We detected alpha, beta and gamma transitions of hydrogen and alpha transitions of helium. We used the observed line parameters to 1) measure the source velocity (56.6 $pm$ 0.3 km s$^{-1}$) with respect to the Local Standard of Rest (LSR); 2) estimate the electron temperature (8500 $pm$ 1800 K) of the HII region and 3) derive the emission measure (5.4 $pm$ 2.7 $times$ 10$^{6}$ pc cm$^{-6}$) of the ionized gas.
245 - Gisela Ortiz-Leon 2011
The radio emission from the well-studied massive stellar system Cyg OB2 #5 is known to fluctuate with a period of 6.7 years between a low-flux state when the emission is entirely of free-free origin, and a high-flux state when an additional non-therm al component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours, and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system, and that of an unseen companion on a somewhat eccentric orbit with a 6.7-yr period and a 5 to 10 mas semi-major axis. Together with the previously reported wind-collision region located about 0.8 arcsec to the north-east of the contact binary, Cyg OB2 #5 appears to be the only multiple system known so far to harbor two radio-imaged wind-collision regions.
We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-reds hift (z=2-4) galaxies. Our simulations cover the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).
188 - Curtis J. Saxton 2010
We investigated the time-dependent radiative and dynamical properties of light supersonic jets launched into an external medium, using hydrodynamic simulations and numerical radiative transfer calculations. These involved various structural models fo r the ambient media, with density profiles appropriate for galactic and extragalactic systems. The radiative transfer formulation took full account of emission, absorption, re-emission, Faraday rotation and Faraday conversion explicitly. High time-resolution intensity maps were generated, frame-by-frame, to track the spatial hydrodynamical and radiative properties of the evolving jets. Intensity light curves were computed via integrating spatially over the emission maps. We apply the models to jets in active galactic nuclei (AGN). From the jet simulations and the time-dependent emission calculations we derived empirical relations for the emission intensity and size for jets at various evolutionary stages. The temporal properties of jet emission are not solely consequences of intrinsic variations in the hydrodynamics and thermal properties of the jet. They also depend on the interaction between the jet and the ambient medium. The interpretation of radio jet morphology therefore needs to take account of environmental factors. Our calculations have also shown that the environmental interactions can affect specific emitting features, such as internal shocks and hotspots. Quantification of the temporal evolution and spatial distribution of these bright features, together with the derived relations between jet size and emission, would enable us to set constraints on the hydrodynamics of AGN and the structure of the ambient medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا