ﻻ يوجد ملخص باللغة العربية
Laser induced electronic excitations that spontaneously emit photons and decay directly to the initial ground state (optical cycling transitions) are used in quantum information and precision measurement for state initialization and readout. To extend this primarily atomic technique to organic compounds, we theoretically investigate optical cycling of alkaline earth phenoxides and their functionalized derivatives. We find that optical cycle leakage due to wavefunction mismatch is low in these species, and can be further suppressed by using chemical substitution to boost the electron withdrawing strength of the aromatic molecular ligand through resonance and induction effects. This provides a straightforward way to use chemical functional groups to construct optical cycling moieties for laser cooling, state preparation, and quantum measurement.
We present quantitative measurements of the photoassociation of cesium molecules inside a far-detuned optical dipole trap. A model of the trap depletion dynamics is derived which allows to extract absolute photoassociation rate coefficients for the i
We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Co
The Franck-Condon principle governing molecular electronic transitions is utilized to study heavy-quark hadron decays. This provides a direct assessment of the wavefunction of the parent hadron if the momentum distribution of the open-flavor decay pr
We present a method of transferring a cold atom between spatially separated microtraps by means of a Raman transition between the ground motional states of the two traps. The intermediate states for the Raman transition are the vibrational levels of
We describe a method for determining the radiative decay properties of a molecule by studying the saturation of laser-induced fluorescence and the associated power broadening of spectral lines. The fluorescence saturates because the molecules decay t