ﻻ يوجد ملخص باللغة العربية
We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called vertical transitions in the conventional FC effect. The vertical transition for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.
We show that for a quantum system coupled to both vibrational and electromagnetic environments, enforcing additivity of their combined influences results in non-equilibrium dynamics that does not respect the Franck-Condon principle. We overcome this
The Franck-Condon principle governing molecular electronic transitions is utilized to study heavy-quark hadron decays. This provides a direct assessment of the wavefunction of the parent hadron if the momentum distribution of the open-flavor decay pr
The optical properties of a small magnetic cluster are studied in a magnetic version of Frank-Condon principle. This simple model is considered to show new basic physics and could be adopted to treat real problems. The energies and wavefunctions of t
Understanding the influence of vibrational motion of the atoms on electronic transitions in molecules constitutes a cornerstone of quantum physics, as epitomized by the Franck-Condon principle of spectroscopy. Recent advances in building molecular-el
Laser induced electronic excitations that spontaneously emit photons and decay directly to the initial ground state (optical cycling transitions) are used in quantum information and precision measurement for state initialization and readout. To exten